Climatic Change

, Volume 124, Issue 1–2, pp 317–332 | Cite as

Projecting twenty-first century regional sea-level changes

  • A. B. A. Slangen
  • M. Carson
  • C. A. Katsman
  • R. S. W. van de Wal
  • A. Köhl
  • L. L. A. Vermeersen
  • D. Stammer
Article

Abstract

We present regional sea-level projections and associated uncertainty estimates for the end of the 21st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.

Supplementary material

10584_2014_1080_MOESM1_ESM.pdf (3.8 mb)
(PDF 3891 KB)

References

  1. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20,355–20,362CrossRefGoogle Scholar
  2. Bamber JL, Riva REM, Vermeersen LLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the west Antarctic ice sheet. Science 324:901–903CrossRefGoogle Scholar
  3. Bi D, Budd WF, Hirst AC (2002) Response of the Antarctic circumpolar current transport to global warming in a coupled model. Geophys Res Lett 29(24). doi:10.1029/2002GL015919 Google Scholar
  4. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214. doi:10.1126/science.1154580 CrossRefGoogle Scholar
  5. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01,602. doi:10.1029/2005GL024826 CrossRefGoogle Scholar
  6. Cook AJ, Vaughan DG (2010) Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4:77–98. doi:10.5194/tc-4-77-2010 CrossRefGoogle Scholar
  7. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  8. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astron Soc 46:647–667CrossRefGoogle Scholar
  9. Fettweis X, Franco B, Tedesco M, van Angelen JH, Lenaerts JTM, van den Broeke MR, Gallee H (2013) Estimating the Greenland ice sheet surface mass balance contribution to futuresea level rise using the regional atmospheric climate model MAR. Cryosphere 7:469–489. doi:10.5194/tc-7-469-2013 CrossRefGoogle Scholar
  10. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical southern hemisphere winds and currents. Geophys Res Lett 33(6). doi:10.1029/2005GL025332 Google Scholar
  11. Goelzer H, Huybrechts P, Fürst JJ, Nick FM, Andersen ML, Edwards TL, Fettweis X, Payne AJ, Shannon S (2013) Sensitivity of Greenland ice sheet projections to model formulations. J Glaciol 59(216). doi:10.3189/2013JoG12J182 Google Scholar
  12. Gregory JM (2010) Long?term effect of volcanic forcing on ocean heat content. Geophys Res Lett 37(L22701). doi:10.1029/2010GL045507 Google Scholar
  13. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Phil Trans R Soc A 364:1709–1731. doi:10.1098/rsta.2006.1796 CrossRefGoogle Scholar
  14. Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several aogcms for global and regional sea level change 1900–2100. Clim Dyn 18:225–240CrossRefGoogle Scholar
  15. Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X, Ivins ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S, Whitehouse PL, Zwally HJ (2013) Ice-sheet mass balance and climate change. Nature 498(7452):51–59. doi:10.1038/nature12238 CrossRefGoogle Scholar
  16. Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07,305. doi:10.1029/2004GL019626 CrossRefGoogle Scholar
  17. Joughin I, Alley RB (2011) Stability of the West Antarctic ice sheet in a warming world. Nat Geosci 4:506–513. doi:10.1038/ngeo1194 CrossRefGoogle Scholar
  18. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change 91(3):351–374. doi:10.1007/s10584-008-9442-9 CrossRefGoogle Scholar
  19. Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag HP, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal RSW, Weisse R (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Clim Change 109:617–645. doi:10.1007/s10584-011-0037-5 CrossRefGoogle Scholar
  20. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38(L17401). doi:10.1029/2011GL048604
  21. Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Change 103:619–625. doi:10.1007/s10584-010-9935-1 CrossRefGoogle Scholar
  22. Krinner G, Magand O, Simmons I, Genthon C, Dufresne JL (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn 28:215–230. doi:10.1007/s00382-006-0177-x CrossRefGoogle Scholar
  23. Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37(296–312)Google Scholar
  24. Ligtenberg SRM, van de Berg WJ, van den Broeke MR, Rae JGL, van Meijgaard E (2013) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim Dyn 41:867–884. doi:10.1007/s00382-013-1749-1 CrossRefGoogle Scholar
  25. Little CM, Oppenheimer M, Urban NM (2013) Upper bounds on twenty-first-century Antarctic ice loss assessed using a probabilistic framework. Nature Clim Change 3:654–659. doi:10.1038/nclimate1845 CrossRefGoogle Scholar
  26. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007a) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  27. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007b) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U. K. and New York, NY. USAGoogle Scholar
  28. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2: 471–478. doi:10.1038/NGEO544 CrossRefGoogle Scholar
  29. Mitrovica JX, Peltier WR (1991) On postglacial geoid subsidence over the equatorial oceans. J Geophys Res 96(B12):20,053–20,071CrossRefGoogle Scholar
  30. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  31. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma MTKram, Meehl GA, Mitchell JFB, Nakicenovic NK Riahi, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(747–756). doi:10.1038/nature08823 Google Scholar
  32. Nakada M, Lambeck K (1988) The melting history of the late Pleistocene Antarctic ice sheet. Nature 333:36–40CrossRefGoogle Scholar
  33. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(5985):1517–1520. doi:10.1126/science.1185782 CrossRefGoogle Scholar
  34. Nick FM, Vieli A, Andersen ML, Joughin I, Payne A, Edwards TL, Pattyn F, Van de Wal RSW (2013) Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497(7448). doi:10.1038/nature12068 Google Scholar
  35. Peltier W (2004) Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  36. Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dynam Discuss 4:11–29. doi:10.5194/esd-4-11-2013 CrossRefGoogle Scholar
  37. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(1340). doi:10.1126/science.1159099 Google Scholar
  38. Phillips T, Rajaram H, Steffen K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys Res Lett 37(20). doi:10.1029/2010GL044397 Google Scholar
  39. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395). doi:10.1038/nature10968 Google Scholar
  40. Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115(F01010). doi:10.1029/2009JF001373 Google Scholar
  41. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315(5810):368–370. doi:10.1126/science.1135456 CrossRefGoogle Scholar
  42. Schotman HHA, Vermeersen LLA (2005) Sensitivity of glacial isostatic adjustment models with shallow low-viscosity earth layers to the ice-load history in relation to the performance of GOCE and GRACE. Earth Planet Sci Lett 236:828–844CrossRefGoogle Scholar
  43. Slangen ABA, van de Wal RSW (2011) An assessment of uncertainties in using volume-area modelling for computing the twenty-first century glacier contribution to sea-level change. Cryosphere 5:673–686. doi:10.5194/tc-5-673-2011 CrossRefGoogle Scholar
  44. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5–6):1191–1209. doi:10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  45. Spada G, Bamber JL, Hurkmans RTWL (2013) The gravitationally consistent sea-level fingerprint of future terrestrial ice loss. Geophys Res Lett 40:1–5. doi:10.1029/2012GL053000 Google Scholar
  46. Stammer D, Huttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Clim 21:2093–2101. doi:10.1175/2007JCLI1803.1 CrossRefGoogle Scholar
  47. Stammer D, Agarwal N, Herrmann P, Köhl A, Mechoso CR (2011) Response of a coupled ocean–atmosphere model to Greenland ice melting. Surv Geophys 32:621–642. doi:10.1007/s10712-011-9142-2 CrossRefGoogle Scholar
  48. Taylor K, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  49. Van Angelen JH, Lenaerts JTM, Van den Broeke MR, Van Meijgaard E (2013) Rapid loss of firn pore space accelerates 21st century greenland mass loss. Geophys Res Lett 40(10):2109–2113. doi:10.1002/grl.50490 CrossRefGoogle Scholar
  50. Van de Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Clim Dyn 18:359–366CrossRefGoogle Scholar
  51. Wada Y, van Beek LPH, Weiland FCS, Chao BF, Wu YH, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39(L09402). doi:10.1029/2012GL051230 Google Scholar
  52. Willis JK, Church JA (2012) Regional sea-level projection. Science 336(6081):550–551. doi:10.1126/science.1220366 CrossRefGoogle Scholar
  53. Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic ”inverted barometer” effect. Rev Geophys 35(1):79–107CrossRefGoogle Scholar
  54. Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett 39(17). doi:10.1029/2012GL052947 Google Scholar
  55. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266. doi:10.1038/ngeo462 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. B. A. Slangen
    • 1
    • 6
  • M. Carson
    • 2
  • C. A. Katsman
    • 3
  • R. S. W. van de Wal
    • 1
  • A. Köhl
    • 2
  • L. L. A. Vermeersen
    • 4
    • 5
  • D. Stammer
    • 2
  1. 1.Institute for Marine and Atmospheric research Utrecht (IMAU)Utrecht UniversityUtrechtThe Netherlands
  2. 2.Center for Earth System Research and Sustainability (CEN)University of HamburgHamburgGermany
  3. 3.Royal Netherlands Meteorological Institute (KNMI)AE De BiltThe Netherlands
  4. 4.Delft Climate InstituteFaculty of Aerospace EngineeringHS DelftThe Netherlands
  5. 5.Royal Netherlands Institute for Sea Research (NIOZ)SZ ’t HorntjeThe Netherlands
  6. 6.CSIRO Marine and Atmospheric Research (CMAR)HobartAustralia

Personalised recommendations