Climatic Change

, Volume 129, Issue 3–4, pp 573–588 | Cite as

Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)

  • Ian Kraucunas
  • Leon Clarke
  • James Dirks
  • John Hathaway
  • Mohamad Hejazi
  • Kathy Hibbard
  • Maoyi Huang
  • Chunlian Jin
  • Michael Kintner-Meyer
  • Kerstin Kleese van Dam
  • Ruby Leung
  • Hong-Yi Li
  • Richard Moss
  • Marty Peterson
  • Jennie Rice
  • Michael Scott
  • Allison Thomson
  • Nathalie Voisin
  • Tristram West
Article

Abstract

The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture and land use, socioeconomics, and energy systems using a flexible coupling approach. Stakeholder decision support needs underpin the application of the platform to regional issues, and an uncertainty characterization process is used to identify robust decisions. The platform can be customized to inform a variety of complex questions, such as how a policy in one sector might affect the ability to meet climate mitigation targets or adaptation goals in another sector. Current numerical experiments focus on the eastern United States, but the framework is designed to be regionally flexible. This paper provides a high-level overview of PRIMA’s functional capabilities and describes some key challenges and opportunities associated with integrated regional modeling.

References

  1. Giorgi F, Marinucci MR, Visconti G (1990) Use of a limited area model nested in a general circulation model for region climate simulation over Europe. J Geophys Res 95:18,413–18,431CrossRefGoogle Scholar
  2. Giorgi F et al. (2001) Chapter 10. Regional climate information—evaluation and projections. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, pp 583–638Google Scholar
  3. Gorton I, Sivaramakrishnan C, Black G, White S, Purohit S, Lansing C, Madison M, Schuchardt K, Liu Y (2012) Velo: a knowledge-management framework for modeling and simulation. Comput Sci Eng 14(2):12–23CrossRefGoogle Scholar
  4. Hibbard KA, Janetos AC (2013) The regional nature of global challenges: a need and strategy for integrated and regional modeling. Clim Chang 116:3–4Google Scholar
  5. Ke Y, Leung LR, Huang M, Coleman AM, Li H, Wigmosta MS (2012) Development of high resolution land surface parameters for the community land model. Geosci Model Dev 5:1341–1362CrossRefGoogle Scholar
  6. Lempert R, Nakicenovic N, Sarewitz D, Schlesinger M (2004) Characterizing climate-change uncertainties for decision-makers. An editorial essay. Clim Chang 65:1–9CrossRefGoogle Scholar
  7. Li H, Huang M, Wigmosta M, Ke Y, Coleman A, Leung LR, Wang A, Ricciuto DM (2011) Evaluating runoff simulations from the community land model 4.0 using observations from flux towers and a mountain watershed. J Geophys Res 116, D24120Google Scholar
  8. Li H, Wigmosta MS, Wu H, Huang M, Ke Y, Coleman AM, Leung LR (2013) A physically based runoff routing model for land surface and earth system models. J Hydrometeorol 14:808–828CrossRefGoogle Scholar
  9. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Synder M, Jones RG, Nunes AMB, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the north american regional climate change assessment program (NARCCAP). Clim Chang 120:965–975CrossRefGoogle Scholar
  10. Rice JS, Moss RH, Runci PJ, Anderson KL, Malone EL (2012) Incorporating stakeholder decision support needs into an integrated regional earth system model. Mitig Adapt Strateg Glob Chang 17:805–819CrossRefGoogle Scholar
  11. Scott MJ, Daly DS, Zhou Y, Rice JS, Patel PL, McJeon HC, Kyle GP, Kim SH, Eom J, Clarke JE (2014) Evaluating sub‐national building‐energy efficiency policy options under uncertainty: efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated‐assessment model. Energy Econ (in press)Google Scholar
  12. Skaggs R, Hibbard KA, Janetos TC, Rice JS (2012) Climate and energy-water-land system interactions. Technical report to the U.S. Department of Energy in Support of the National Climate Assessment. Report no. PNNL-21185. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  13. Thomson AM, GP Kyle, X Zhang, V Bandaru, TO West, and MA Wise (2014) The contribution of future agricultural trends in the US Midwest to global climate change mitigation. Global Environ Change. doi:10.1016/j.gloenvcha.2013.11.019
  14. U.S. Department of Energy, Office of Science (2013) Community modeling and long-term prediction of the regional integrated water cycle. DOE/SC-0155Google Scholar
  15. Unwin S, Moss R, Rice J, Scott M (2011) Characterizing uncertainty for regional climate change mitigation and adaptation decisions. Technical report PNNL-20788. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  16. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31CrossRefGoogle Scholar
  17. Voisin N, Li H, Ward D, Huang M, Wigmosta M, Leung LR (2013a) On an improved sub-regional water resources management representation for integration into earth system models. Hydrol Earth Syst Sci 17:3605–3622CrossRefGoogle Scholar
  18. Voisin N, Liu L, Hejazi M, Tesfa T, Li H, Huang M, Liu Y, Leung LR (2013b) One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the U.S. Midwest. Hydrol Earth Syst Sci Discuss 17:4555–4575Google Scholar
  19. Yang, Z, Wang T, Leung LR, Hibbard KA, Janetos AC, Kraucunas IP, Rice JS, Preston B, and Wilbanks T (2013) A modeling study of coastal inundation induced by storm surge, sea level rise and subsidence in the Gulf of Mexico. Natural Hazards. doi:10.1007/s11069-013-0974-6
  20. Zhang X, Izaurralde RC, Manowitz D, West TO, Post WM, Thomson AM, Bandaru VP, Nichols J, Williams RR (2010) An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. Glob Chang Biol Bioenergy 2:258–277CrossRefGoogle Scholar
  21. Zhou, Y, Clarke L, Eom J, Kyle P, Patel P, Kim SH, Dirks J, Jensen E, Liu Y, Rice J, Schmidt L, Seiple T (2014) Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Appl Energy 113:1077–1088Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ian Kraucunas
    • 1
  • Leon Clarke
    • 1
  • James Dirks
    • 1
  • John Hathaway
    • 1
  • Mohamad Hejazi
    • 1
  • Kathy Hibbard
    • 1
  • Maoyi Huang
    • 1
  • Chunlian Jin
    • 1
  • Michael Kintner-Meyer
    • 1
  • Kerstin Kleese van Dam
    • 1
  • Ruby Leung
    • 1
  • Hong-Yi Li
    • 1
  • Richard Moss
    • 1
  • Marty Peterson
    • 1
  • Jennie Rice
    • 1
  • Michael Scott
    • 1
  • Allison Thomson
    • 1
  • Nathalie Voisin
    • 1
  • Tristram West
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations