Climatic Change

, Volume 122, Issue 1–2, pp 283–298 | Cite as

Impact of anthropogenic CO2 on the next glacial cycle

  • Carmen Herrero
  • Antonio García-Olivares
  • Josep L. Pelegrí


The model of Paillard and Parrenin (Earth Planet Sci Lett 227(3–4):263–271, 2004) has been recently optimized for the last eight glacial cycles, leading to two different relaxation models with model-data correlations between 0.8 and 0.9 (García-Olivares and Herrero (Clim Dyn 1–25, 2012b)). These two models are here used to predict the effect of an anthropogenic CO2 pulse on the evolution of atmospheric CO2, global ice volume and Antarctic ice cover during the next 300 kyr. The initial atmospheric CO2 condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources (URR), with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. The next 20 kyr will have an abnormally high greenhouse effect which, according to the CO2 values, will lengthen the present interglacial by some 25 to 33 kyr. This is because the perturbation of the current interglacial will lead to a delay in the future advance of the ice sheet on the Antarctic shelf, causing that the relative maximum of boreal insolation found 65 kyr after present (AP) will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation.


Climate change Paleoclimate Relaxation models Glacial oscillations Anthropogenic perturbation Future earth climate 



This study has been carried out in the framework of project TIC-MOC (CTM2011-28867), funded by the 2008-2011 Spanish R+D Plan. C. Herrero acknowledges a CSIC JAE-Predoc scholarship co-financed by the European Social Fund (FSE). We thank Carles Pelejero and Eva Calvo for their help with proxy data and their useful support and also to Didier Paillard for his interesting suggestions. Some useful discussions were held with Anna Cabré, Xiaorong Li and Levin Nickelsen, participants of a supervised work carried out as part of the Ramon Margalef Summer Colloquium held in Barcelona between 1 and 13 July 2013. The authors would also like to sincerely thank three anonymous reviewers whom greatly helped to improve the manuscript.


  1. Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110:C09S05Google Scholar
  2. Archer D, Ganopolski A (2005) A movable trigger: fossil fuel co2 and the onset of the next glaciation. Geochem Geophys Geosyst 6(5):Q05,003. doi:10.1029/2004GC000891 Google Scholar
  3. Archer D, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pCO2 cycles?Rev Geophys 38(2):159–189. doi:10.1029/1999RG000066 CrossRefGoogle Scholar
  4. Archer D, Buffett B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106(49):20,596–20,601. doi:10.1073/pnas.0800885105., CrossRefGoogle Scholar
  5. Berg P, Boland A (2013) Analysis of ultimate fossil fuel reserves and associated co2 emissions in ipcc scenarios. Nat Resour Res. doi:10.1007/s11053-013-9207-7
  6. Berger A (1978) Long term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367CrossRefGoogle Scholar
  7. Bintanja R, van de Wal RS, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128CrossRefGoogle Scholar
  8. Boden A, Marland G, Andres R (2010) Global, regional, and national fossil-fuel CO2 emissions. Tech. rep., Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of EnergyGoogle Scholar
  9. Crucifix M (2011) How can a glacial inception be predicted?The Holocene 21(5):831–842. doi:10.1177/0959683610394883., CrossRefGoogle Scholar
  10. Energy Watch Group (2007) Coal: resources and future production. EWG-Series No 1/2007 1Google Scholar
  11. García-Olivares A, Herrero C (2012a) Fitting the last pleistocene delta o-18 and CO2 time-series with simple box models. Sci Mar 76S1:209–218. CrossRefGoogle Scholar
  12. García-Olivares A, Herrero C (2012b) Simulation of glacial-interglacial cycles by simple relaxation models: consistency with observational results. Clim Dyn 41(5–6):1307–1331. doi:10.1007/s00382-012-1614-7 Google Scholar
  13. Gassan-zade O (2004) National ghg emission factors in former soviet union countries. TSU Internship Report, IPCC NGGIP/IGES p 53Google Scholar
  14. Grinsted A, Moore J, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Processes Geophys 11:561–566CrossRefGoogle Scholar
  15. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121–1132., CrossRefGoogle Scholar
  16. Höök M, Sivertsson A, Aleklett K (2010) Validity of the fossil fuel production outlooks in the IPCC emission scenarios. Nat Resour Res 19:63–81. doi:10.1007/s11053-010-9113-1 CrossRefGoogle Scholar
  17. IEA (2010) World energy outlook. Tech. rep., International Energy Agency.
  18. IEA (2012) World energy outlook. Tech. rep., International Energy Agency.
  19. Indermuhle A, Monnin E, Stauffer B, Stocker TF, Wahlen M (2000) Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome Ice Core, Antarctica. Geophys Res Lett 27(5):735–738. doi:10.1029/1999GL010960 CrossRefGoogle Scholar
  20. IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the 3rd assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  21. IPCC (2007) Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change, vol 6. Paleoclimate, Fig. 6.3. Cambridge University Press, Cambridge.
  22. Jain A, Kheshgi H, Wuebbles D (1994) Integrated science model for assessment of climate change model.In: Proceedings of air and waste management association 87th annual meeting, CincinnatiGoogle Scholar
  23. Kheshgi HS, Jain AK (2003) Projecting future climate change: implications of carbon cycle model intercomparisons. Glob Biogeochem Cycles17(2). doi:10.1029/2001GB001842
  24. Laherrere J (2006) Fossil fuels: what future? In: Proceedings of theWorkshop on Global Dialogue on Energy Security. The Dialogue International Policy Institute, China Institute of International Studies, BeijingGoogle Scholar
  25. Laherrere J (2012a) ASPO: lessons learned: successes and challenges. In: 10 years of ASPO: lessons learned.
  26. Laherrere J (2012b) Update on coal. The oil drum.
  27. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography 20(1):PA1003. doi:10.1029/2004PA001071 CrossRefGoogle Scholar
  28. Loutre M, Berger A (2000) Future climatic changes: are we entering an exceptionally long interglacial?Clim Chang 46:61–90. doi:10.1023/A:1005559827189 CrossRefGoogle Scholar
  29. Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382. doi:10.1038/nature06949 CrossRefGoogle Scholar
  30. Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A 302(5–6):299–307CrossRefGoogle Scholar
  31. Marwan N, Romano MC, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329CrossRefGoogle Scholar
  32. Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Bernhard S, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114CrossRefGoogle Scholar
  33. Mysak LA (2008) Glacial inceptions: past and future. Atmosphere-Ocean 46(3):317–341. doi:10.3137/ao.460303., CrossRefGoogle Scholar
  34. Paillard D (1998) The timing of pleistocene glaciations from a simple multiple-state climate model. Nature 391(6665):378–381. doi:10.1038/34891 CrossRefGoogle Scholar
  35. Paillard D (2010) Climate and the orbital parameters of the Earth. Compt Rendus Geosci 342(4–5):273–285. CrossRefGoogle Scholar
  36. Paillard D, Parrenin F (2004) The Antarctic ice sheet and the triggering of deglaciations. Earth Planet Sci Lett 227(3–4):263–271. CrossRefGoogle Scholar
  37. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420000 years from the Vostok ice core Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  38. Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  39. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806):859–869. doi:10.1038/35038000 CrossRefGoogle Scholar
  40. SRES (2000) Special report on emissions scenarios, report prepared by the intergovernmental panel on climate change (IPCC) for the 3rd assessment report. Tech. rep., UNGoogle Scholar
  41. Winograd IJ, Landwehr JM, Ludwig KR, Coplen TB, Riggs AC (1997) Duration and structure of the past four interglacials. Quatern Res 48:141–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carmen Herrero
    • 1
  • Antonio García-Olivares
    • 1
  • Josep L. Pelegrí
    • 2
  1. 1.Institut de Ciències del Mar, CSICBarcelonaSpain
  2. 2.LINCGlobalInstitut de Ciències del Mar, CSICBarcelonaSpain

Personalised recommendations