Climatic Change

, Volume 122, Issue 1–2, pp 243–256 | Cite as

Seasonal to yearly assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050)

  • M. Gonçalves
  • A. Barrera-Escoda
  • D. Guerreiro
  • J. M. Baldasano
  • J. Cunillera
Article

Abstract

The complex topography and high climatic variability of the North Western Mediterranean Basin (NWMB) require a detailed assessment of climate change projections at high resolution. ECHAM5/MPIOM global climate projections for mid-21st century and three different emission scenarios are downscaled at 10 km resolution over the NWMB, using the WRF-ARW regional model. High resolution improves the spatial distribution of temperature and precipitation climatologies, with Pearson's correlation against observation being higher for WRF-ARW (0.98 for temperature and 0.81 for precipitation) when compared to the ERA40 reanalysis (0.69 and 0.53, respectively). However, downscaled results slightly underestimate mean temperature (≈1.3 K) and overestimate the precipitation field (≈400 mm/year). Temperature is expected to raise in the NWMB in all considered scenarios (up to 1.4 K for the annual mean), and particularly during summertime and at high altitude areas. Annual mean precipitation is likely to decrease (around −5 % to −13 % for the most extreme scenarios). The climate signal for seasonal precipitation is not so clear, as it is highly influenced by the driving GCM simulation. All scenarios suggest statistically significant decreases of precipitation for mountain ranges in winter and autumn. High resolution simulations of regional climate are potentially useful to decision makers. Nevertheless, uncertainties related to seasonal precipitation projections still persist and have to be addressed.

Supplementary material

10584_2013_994_MOESM1_ESM.pdf (3.8 mb)
Online Resource 1(PDF 3910 kb)
10584_2013_994_MOESM2_ESM.pdf (37 kb)
Online Resource 2(PDF 37 kb)
10584_2013_994_MOESM3_ESM.pdf (1.3 mb)
Online Resource 3(PDF 1360 kb)
10584_2013_994_MOESM4_ESM.pdf (3 mb)
Online Resource 4(PDF 3118 kb)
10584_2013_994_MOESM5_ESM.pdf (7.1 mb)
Online Resource 5(PDF 7252 kb)
10584_2013_994_MOESM6_ESM.pdf (2.9 mb)
Online Resource 6(PDF 2918 kb)
10584_2013_994_MOESM7_ESM.pdf (13.2 mb)
Online Resource 7(PDF 13564 kb)

References

  1. Argüeso D et al (2012a) Evaluation of WRF mean and extreme precipitation over Spain: present climate (1970–1999). J Clim 25:4883–4897. doi:10.1175/JCLI-D-11-00276.1 CrossRefGoogle Scholar
  2. Argüeso D et al (2012b) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res 117, D12108. doi:10.1029/2011JD017399 Google Scholar
  3. Barrera-Escoda A, Cunillera J (2011) Climate change projections for Catalonia (NE Iberian Peninsula). Part I: Regional climate modeling. Tethys 8:75–87. doi:10.3369/tethys.2011.8.08 Google Scholar
  4. Beninston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31CrossRefGoogle Scholar
  5. Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2012) WRF high resolution simulation of Iberian Mean and extreme precipitation climate. Int J Climatol. doi:10.1002/joc.3616 Google Scholar
  6. Christensen JH et al (2007a) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  7. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007b) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81:1–6. doi:10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  8. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  9. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean Region from a high resolution double nested RCM simulation. Geophys Res Lett 33, L03706. doi:10.1029/2005GL024954 Google Scholar
  10. Gao L, Bernhardt M, Schulz K (2012) Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16:4661–4673. doi:10.5194/hess-16-4661-2012 CrossRefGoogle Scholar
  11. Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33, L08707. doi:10.1029/2006GL025734 Google Scholar
  12. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216CrossRefGoogle Scholar
  13. Giorgi F, Hurrell J, Marinucci M, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296CrossRefGoogle Scholar
  14. Gómez-Navarro JJ et al (2012) What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys Res Lett 39, L24701. doi:10.1029/2012GL054206 Google Scholar
  15. Heikkilä U, Sandvick A, Sorteberg A (2010) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551–1564. doi:10.1007/s00382-010-0928-6 CrossRefGoogle Scholar
  16. Herrera S et al (2012) Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85. doi:10.1002/joc.2256 CrossRefGoogle Scholar
  17. Hong S, Dudhia J, Chen S (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–132CrossRefGoogle Scholar
  18. Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  19. Iacono MJ et al (2009) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113, D13103. doi:10.1029/2008JD009944 CrossRefGoogle Scholar
  20. Jiménez-Guerrero P et al (2013) Mean fields and interannual variability in RCM simulations over Spain: the ESCENA project. Clim Res 57:201–220. doi:10.3354/cr01165 Google Scholar
  21. Jorba O, Loridan T, Jiménez-Guerrero P, Baldasano JM (2008) Annual evaluation of WRF-ARW and WRF-NMM meteorological simulations over Europe. 9th Annual WRF Users’ Workshop. 23–27 June, 2008. Boulder, CO. USAGoogle Scholar
  22. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  23. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  24. Marsland SJ et al (2003) The Max-Planck-Institute global ocean/sea-ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127. doi:10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  25. Martin A et al (2007) Sensitivities of a flash flood over Catalonia: a numerical analysis. Mon Weather Rev 135:651–669. doi:10.1175/MWR3316.1 CrossRefGoogle Scholar
  26. Martín-Vide J (1992) El Clima. Geografia General dels Països Catalans. Enciclopèdia Catalana 1:1–110, BarcelonaGoogle Scholar
  27. Mercader J, Codina B, Sairouni A, Cunillera J (2010) Results of the meteorological model WRF-ARW over Catalonia using diferent parametrizations of convection and cloud microphysics. Tethys 7:75–86. doi:10.3369/tethys.2010.7.07 Google Scholar
  28. Nakićenović et al (2000) Emissions scenarios 2000–Special Report of the Intergovernmental Panel on Climate Change (SRES-IEEE). Cambridge University Press, Cambridge, RU, 570pp. Available at: http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0
  29. Nieto S, Rodríguez-Puebla C (2006) Comparison of precipitation from observed data and general circulation models over the Iberian Peninsula. J Clim 19:4254–4275CrossRefGoogle Scholar
  30. Niu GY et al (2011) The community Noah land surface model with multiparameterization options (Noah‐MP): 1.Model description and evaluation with local‐scale measurements. J Geophys Res 116, D12109CrossRefGoogle Scholar
  31. Randall DA et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  32. Roeckner E (2005a) IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.1: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. CERA-DB “EH5-T63L31_OM_20C3M_1_6H”Google Scholar
  33. Roeckner E (2005b) IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.3: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate. Hamburg, Germany. CERA-DB “EH5-T63L31_OM_20C3M_3_6H”Google Scholar
  34. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I. Max-Planck Institut für Meteorologie. Report No. 349, Hamburg, Germany, 127ppGoogle Scholar
  35. Roeckner E, Lautenschlager M, Schneider H (2006a) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA2 run no.1: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A2_1_6H
  36. Roeckner E et al (2006b) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA2 run no.3: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg. Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A2_3_6H
  37. Roeckner E et al (2006c) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H
  38. Roeckner E et al (2006d) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H
  39. Roeckner E et al (2006e) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESB1 run no.1: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_B1_1_6H
  40. Roeckner E et al (2006f) IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESB1 run no.3: atmosphere 6 HOUR values MPImet/MaDGermany. World Data Center for Climate, Hamburg, Germany. doi:10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_B1_3_6H
  41. Romero R, Guijarro JA, Ramis C, Alonso S (1998a) A 30-year (1964–1993) daily rainfall data base for the Spanish mediterranean regions: first exploratory study. Int J Climatol 18:541–560CrossRefGoogle Scholar
  42. Romero R, Ramis C, Alsonso S (1998b) Performance of two cumulus convection parameterizations for two heavy precipitation events in the Western Mediterranean. Meteorol Atmos Phys 66:197–214CrossRefGoogle Scholar
  43. Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Chang 1:82–96CrossRefGoogle Scholar
  44. Skamarock WC, Klemp JB (2008) A time-split non hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  45. SMC (2012) Butlletí Anual d’Indicadors Climàtics 2011. Servei Meteorològic de Catalunya, Barcelona, Spain, 77pp. Available at: http://bit.ly/196Zl4j
  46. Soares PMM et al (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522. doi:10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  47. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. doi:10.1029/2000JD900719 CrossRefGoogle Scholar
  48. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  49. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts. Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter. Available at: http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf
  50. van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881. doi:10.5194/acp-6-863-2006 CrossRefGoogle Scholar
  51. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673CrossRefGoogle Scholar
  52. Wilks DS (2006) Statistical methods in the atmospheric sciences. International geophysics series 91. Elsevier Academic Press Publications, USA, 627ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Gonçalves
    • 1
    • 2
  • A. Barrera-Escoda
    • 3
  • D. Guerreiro
    • 1
  • J. M. Baldasano
    • 1
    • 2
  • J. Cunillera
    • 3
  1. 1.Earth Sciences DepartmentBarcelona Supercomputing CenterBarcelonaSpain
  2. 2.Projects DepartmentTechnical University of CataloniaBarcelonaSpain
  3. 3.Climate Change Unit, Meteorological Service of CataloniaBarcelonaSpain

Personalised recommendations