Climatic Change

, Volume 122, Issue 1–2, pp 111–125 | Cite as

Mass-cargo-affine industries and climate change

The vulnerability of bulk cargo companies along the River Rhine to low water periods
Article

Abstract

The impact of low water periods on inland navigation and companies is well known by ship-operators and companies that rely on this mode of transport but it is rarely a topic of climate impact research. As climate change might affect the frequency and intensity of low water periods, quantifying the impact of climate change on companies and the effects of possible adaptation measures is vital. In this study, we present a model for quantifying the impact of low water events on companies which rely on inland navigation and apply that model to three anonymous iron and steel companies along the River Rhine. The deviation of optimal storage, the storage level that evens out risk vs. fixed capital, is used in the model to measure the vulnerability of companies. The results show that, depending on the climate scenario, the companies might have to deal with either one or five additional days of empty storage in the near future (2021–2050) and up to nine more days by the 2071–2100 period. Seasonal analysis shows that, consistent with the change in the river discharge, the biggest deviations from optimal storage level occur in the late summer/early autumn. Analysis of adaptation options shows that companies would need to increase storage capacity by 2.5 % for the 2021–2050 period, and by 25 % by the 2071–2100 period. A reduction of ship sizes is not an adaptation option for the three companies in this study, because these companies already use relatively small vessels. This is however an efficient adaptation option for companies which employ larger vessels for transport. Another adaptation option would be to reduce the share of transportation via inland waters, but the feasibility of this option depends on the availability and cost of other modes of transport.

References

  1. Bader S, Devanthery D, Hertig A, Jakob A, Kan C, Kohli E, Kozel R, Kummer M, Liechti H, Liechti P, Lukes R, Marti P, Roulier C, Schorer M, Schuerch M, Sieber U (2004) Auswirkungen des Hitzesommers 2003 auf die Gewaesser, Schriftenreihe Umwelt Nr. 369, Ed. BAFU, BernGoogle Scholar
  2. Belz J, Engel H, Krahe P (2004) Das Niedrigwasser 2003 in Deutschlands Stromgebieten. In: Hydrologie und Wasserbewirtschaftung 48, H. 4, pp 162–169Google Scholar
  3. Belz J, Brahmer G, Buiteveld H, Engel H, Grabher R, Hodel H, Krahe P, Lammersen R, Larina M, Mendel H-G, Meuser A, Mller G, Plonka B, Pfister L, Van Vuuren W (2007) Das Abflussregime des Rheins und seiner Nebenfluesse im 20. Jahrhundert, Bericht Nr. I-22 der KHR. ISBN 978-90-70980-33-7Google Scholar
  4. Beuthe M, Jourquin B, Urbain N, Bruinsma F, Lingemann I, Ubbels B, Van Heumen E (2012) Estimating the impacts of water depth and new infrastructures on transport by inland navigation: a multimodal approach for the Rhine corridor. In: Procedia - Social and Behavioral Sciences, vol 54, pp 387–401Google Scholar
  5. Beyer, H-T (n.d.) Allgemeine Betriebswirtschaftslehre Online-Lehrbuch Grundstudium, http://www.economics.phil.uni-erlangen.de/bwl/lehrbuch/kap3/opt_lag/opt_lag.pdf. Accessed 1 Oct 2013
  6. De Vries CJ (2009) Inlandshipping an outstanding choice - Die Zukunft des Gueterverkehrs und der Binnenschifffahrt in Europa 2010–2011, Ed. Bureau Voorlichting Binnenvaart, RotterdamGoogle Scholar
  7. Demirel E (2011) Economic models for inland navigation in the context of climate change. Tinbergen Institute Research Series, no. 495. ISBN 978 90 3610 227 8Google Scholar
  8. Eisenack K, Stecker R (2012) A framework for analyzing climate change adaptations as actions. Mitig Adapt Strateg Glob Chang 17:243–260CrossRefGoogle Scholar
  9. Goergen K, Beersma J, Brahmer G, Buiteveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (2010) Assessment of climate change impacts on discharge in the Rhine River Basin, CHR report, I-23, 229 pp, LelystadGoogle Scholar
  10. Grabs W, Daamen K, Gellens D, Kwadijk JCJ, Lang H, Middelkoop H, Parmet H, Schaedler B, Schulla J, Wilke K (1997) Impact of climate change on hydrological regimes and water resources management in the Rhine basin, CHR-report No. I-16, LelystadGoogle Scholar
  11. Harrison PA, Holman IP, Cojocaru G, Kok K, Kontogianni A, Metzger MJ, Gramberger M (2012) Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Reg Environ Chang. doi:10.1007/s1113-012-0361-y Google Scholar
  12. Jonkeren O, Rietveld P, Van Ommeren J (2007) Climate change and inland waterway transport - welfare effects of low water levels on the river Rhine. J Trans Eco Policy 41(3):387–411Google Scholar
  13. Jonkeren O, Jourquin B, Rietveld P (2009) Modal-split effects of climate change: the effect of low water levels on the competitive position of inland waterway transport in the river Rhine area. Transp Res A Policy Pract. doi:10.1016/j.tra.2009.01.004 Google Scholar
  14. Kleinn J (2002) Climate change and runoff statistics in the Rhine basin: a process study with a coupled climate-runoff model, Dissertation, ETH ZuerichGoogle Scholar
  15. Koetse MJ, Rietveld P (2009) The impact of climate change and weather on transport: an overview of empirical findings. Transp Res D 14:205–221CrossRefGoogle Scholar
  16. Krahe P, Eberle M, Richter K-G, Wilke K (2004) Simulationen des Wasserhaushalts fuer das Rheingebiet, KLIWA Berichte Heft 4. ISBN: 3-937911-16-2Google Scholar
  17. Luengen HB (2005) Technische Entwicklungen in der Stahlindustrie verringern CO2 Emissionen, Fachkonferenz Rheinklima, 15.04.05 BonnGoogle Scholar
  18. Mehlig B, Pohlmann M, Christmann K-H, Lowis J, Willemsen H-G, Storch S, Huth E, Arndt- Dietrich I, Brinkmann M, Guhl B, Winkhaus E (2003) Das hydrologische Jahr 2003 und das aussergewoehnliche Niedrigwasser des Rheins im Sommer 2003. http://www.lanuv.nrw.de/veroeffentlichungen/jahresberichte/2003/jabe03_s47.pdf
  19. Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schaedler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Chang 49:105–128CrossRefGoogle Scholar
  20. Millerd F (2005) The economic impact of climate change on Canadian commercial navigation on the Great Lakes. Waterloo, OntarioGoogle Scholar
  21. Millerd F (2007) Global climate change and Great Lakes international shipping. Transportation Research Board Special Report 291, Waterloo, OntarioGoogle Scholar
  22. Mimler S, Mueller U, Greis S, Rothstein B (2009) Impacts of climate change on electricity generation and consumption. In: Leal Filho W (ed) Interdisciplinary aspects of climate change. Peter Lang Scientific Publishers, Frankfurt. ISBN 978-3-631-58153-7Google Scholar
  23. Moser H, Krahe P, Maurer T, Nilson E, Rothstein B, Scholten A (2008) Wasserstrassen - Handlungsoptionen fuer Wirtschaft und Binnenschifffahrt, Schriftenreihe Forum fuer Hydrologie und Wasserbewirtschaftung, Heft 24.08, pp 137–155. ISBN 978-3-940173-97-3, HennefGoogle Scholar
  24. Nilson E, Perrin C, Beersma J, Carambia M, de Keizer O, Goergen K (2010) Evaluation of data and processing procedures. In: Assessment of climate change impacts on discharge in the Rhine River basin. CHR report, I-23, pp 51–95, LelystadGoogle Scholar
  25. Nilson E, Carambia M, Krahe P, Larina M, Belz J, Promny M (2012) Deduction of discharge scenarios for water management at the River Rhine, BMVBS. Weissensee Verlag, Bonn, pp 83–86Google Scholar
  26. PINE (2004) Prospect of Inland Navigation within enlarged EuropeGoogle Scholar
  27. Renner V (2005) Der Entwurf eines Schiffes orientiert sich immer an den gegenwaertig gueltigen gesetzlichen Vorgaben, Binnenschifffahrt, ZfB, Nr. 6, Juni 2005Google Scholar
  28. Rothstein B (2007) Elektrizitaetswirtschaft als Betroffene des Klimawandels, Habilitationsschrift, unveroeffentlicht, WuerzburgGoogle Scholar
  29. RoW (2010) Atlas on inland navigation transport. (Eds) The Rivers of the World project. http://www.riversoftheworld.nl/component/docman/doc_download/28-atlas-on-inland-waterways-transport
  30. Scholten A (2010) Massenguttransport auf dem Rhein vor dem Hintergrund des Klimawandels - Eine Untersuchung der Auswirkungen von Niedrigwasser auf die Binnenschifffahrt und die verladende Wirtschaft, 361 p. Wuerzburger Geographische Arbeiten, 104, WuerzburgerGoogle Scholar
  31. Scholten A, Rothstein B (2012) Auswirkungen von Niedrigwasser und Klimawandel auf die verladende Wirtschaft, Binnenschifffahrt und Haefen entlang des Rheins, 352 p. Wuerzburger Geographische Arbeiten, 107, WuerzburgGoogle Scholar
  32. Scholten A, Rothstein B, Baumhauer R (2011) Critical Parameters for mass-cargo affine industries due to Climate Change in Germany. In: Leal Filho W (ed) The Economic, social and political elements of climate change. Springer, Berlin, pp 267–287Google Scholar
  33. Schwandt D (2003) Abflussentwicklung in Teileinzugsgebieten des Rheins - Simulation fuer den Ist-Zustand und fuer Klimaszenarien, Dissertation, Universitaet PotsdamGoogle Scholar
  34. VBD (2004) Technische und wissenschaftliche Konzepte fuer flussangepasste Binnenschiffe, Versuchsanstalt fuer Binnenschiffbau e.V., DuisburgGoogle Scholar
  35. WESKA (2006) Europaeischer Schiffahrts- und Hafenkalender, Ausgabe 2006, Verein fuer europaeische Binnenschiffahrt und Wasserstrassen e.V., DuisburgGoogle Scholar
  36. ZKR (1998–2002) Wirtschaftliche Entwicklung der Rheinschifffahrt - Statistiken, Ed. Zentralkommission fuer die Rheinschifffahrt, StrasbourgGoogle Scholar
  37. ZKR (2008) Marktbeobachtung der europaeischen Binnenschiffahrt 2007–1, Ed. Zentralkommission fuer die Rheinschifffahrt, StrasbourgGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anja Scholten
    • 1
  • Benno Rothstein
    • 2
  • Roland Baumhauer
    • 1
  1. 1.University of WuerzburgWuerzburgGermany
  2. 2.University of Applied Sciences Konstanz (HTWG)KonstanzGermany

Personalised recommendations