Climatic Change

, Volume 123, Issue 3–4, pp 353–367 | Cite as

The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies

  • Elmar Kriegler
  • John P. Weyant
  • Geoffrey J. Blanford
  • Volker Krey
  • Leon Clarke
  • Jae Edmonds
  • Allen Fawcett
  • Gunnar Luderer
  • Keywan Riahi
  • Richard Richels
  • Steven K. Rose
  • Massimo Tavoni
  • Detlef P. van Vuuren
Article

Abstract

This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 18 energy-economy and integrated assessment models. The study investigated the importance of individual mitigation options such as energy intensity improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Limiting the atmospheric greenhouse gas concentration to 450 or 550 ppm CO2 equivalent by 2100 would require a decarbonization of the global energy system in the 21st century. Robust characteristics of the energy transformation are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy are found to be most important, due in part to their combined ability to produce negative emissions. The importance of individual low-carbon electricity technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology availability.

Supplementary material

10584_2013_953_MOESM1_ESM.docx (668 kb)
ESM 1(DOCX 667 kb)
10584_2013_953_MOESM2_ESM.xlsx (73 kb)
ESM 2(XLSX 73.2 kb)

References

  1. Azar C et al (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Chang 100:195–202Google Scholar
  2. Bibas R, Méjean A (this issue) Potential and limitations of bioenergy options for low carbon transitions. Clim Chang, submittedGoogle Scholar
  3. Blanford GJ, Kriegler E, Tavoni M (this issue) Harmonization vs. Fragmentation: Overview of climate policy scenarios in EMF27. Clim Chang, submittedGoogle Scholar
  4. Calvin K et al (2012) The role of Asia in mitigating climate change: results from the Asia modeling exercise. Energy Econ 34(3):S251–S260CrossRefGoogle Scholar
  5. Clarke L et al (2008) CO2 emissions mitigation and technological advance: an updated analysis of advanced technology scenarios. PNNL Report Pacific Northwest National Laboratory, RichmondGoogle Scholar
  6. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: overview of the EMF 22 international scenarios. Energy Econ 31:S64–S81CrossRefGoogle Scholar
  7. Edenhofer O et al (2010) The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy J 31:11–48Google Scholar
  8. European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency (2011) Emission Database for Global Atmospheric Research (EDGAR), release version 4.2. http://edgar.jrc.ec.europe.eu
  9. Kim SH, Wada K, Kurosawa A, Roberts M (this issue) Nuclear energy response in the EMF27 study. Clim Chang, submittedGoogle Scholar
  10. Koelbl BS, van den Broek MA, Faaij APC, van Vuuren DP (this issue) Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise. Clim Chang, submittedGoogle Scholar
  11. Krey V, Clarke L (2011) Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim Pol 11:1131–1158CrossRefGoogle Scholar
  12. Krey V, Luderer L, Clarke L, Kriegler E (this issue) Getting from here to there: energy technology transformation pathways in the EMF27 scenarios. Clim Chang, submittedGoogle Scholar
  13. Luderer G, Bosetti V, Jakob M, Leimbach M, Steckel JC, Waisman H, Edenhofer O (2012) The economics of decarbonizing the energy system-results and insights from the RECIPE model intercomparison. Clim Chang 114:9–37CrossRefGoogle Scholar
  14. Luderer G et al. (this issue) The role of renewable energy in climate mitigation: results from the EMF27 scenarios. Clim Chang submittedGoogle Scholar
  15. McCollum DL, Krey V, Riahi K (2011) An integrated approach to energy sustainability. Nat Clim Chang 1(9):428–429CrossRefGoogle Scholar
  16. McCollum D, Bauer N, Calvin K, Kitous A, Riahi K (this issue) Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim Chang, submittedGoogle Scholar
  17. Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162CrossRefGoogle Scholar
  18. Nakicenovic N, Nordhaus W (2011) Editors' introduction: the economics of technologies to combat global warming. Energy Econ 33(4):565–571CrossRefGoogle Scholar
  19. Popp A et al. (this issue) Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim Chang, submittedGoogle Scholar
  20. Riahi K et al (2012) Chapter 17 - Energy pathways for sustainable development. Global energy assessment - toward a sustainable future. IIASA and Cambridge University Press, Cambridge, pp 1203–1306Google Scholar
  21. Riahi K et al (2013) Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2013.09.016
  22. Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren DP, Weyant J (this issue, (a)), Bioenergy in energy transformation and climate management. Clim Chang, submittedGoogle Scholar
  23. Rose SK, Richels R, Smith S, Riahi K, Strefler J, van Vuuren D (this issue, (b)) Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios. Clim Chang, submittedGoogle Scholar
  24. Sugiyama M, Akashi O, Wada K, Kanudia A, Li J, Weyant J (this issue) Role of energy efficiency in climate change mitigation policy for India: Assessment of co-benefits and opportunities within an integrated assessment modeling framework. Clim Chang, submittedGoogle Scholar
  25. Tavoni M, Socolow R (2013) Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim Chang 118(1):1–14CrossRefGoogle Scholar
  26. Tavoni M, Tol R (2010) Counting only the hits? The risk of underestimating the costs of stringent climate policy. Clim Chang 100:769–778CrossRefGoogle Scholar
  27. Weyant JP, de la Chesnaye FC, Blanford GJ (2006) Overview of EMF-21: Multigas Mitigation and Climate Policy. Energy J, Special IssueGoogle Scholar
  28. Weyant JP (2004) EMF 19: alternative technology strategies for climate change policy. Energy Econ 26(4):501–575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Elmar Kriegler
    • 1
  • John P. Weyant
    • 2
  • Geoffrey J. Blanford
    • 3
  • Volker Krey
    • 6
  • Leon Clarke
    • 4
  • Jae Edmonds
    • 4
  • Allen Fawcett
    • 5
  • Gunnar Luderer
    • 1
  • Keywan Riahi
    • 6
  • Richard Richels
    • 3
  • Steven K. Rose
    • 3
  • Massimo Tavoni
    • 7
  • Detlef P. van Vuuren
    • 8
    • 9
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Stanford UniversityPalo AltoUSA
  3. 3.Energy and Environmental Analysis Research GroupElectric Power Research InstituteWashingtonUSA
  4. 4.Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland–College ParkCollege ParkUSA
  5. 5.U.S. Environmental Protection AgencyWashingtonUSA
  6. 6.International Institute for Applied Systems AnalysisLaxenburgAustria
  7. 7.Fondazione Eni Enrico Mattei (FEEM) and Centro-Mediterraneo sui Cambiamenti Climatici (CMCC)MilanItaly
  8. 8.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  9. 9.Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations