Climatic Change

, Volume 121, Issue 1, pp 55–66 | Cite as

Impacts of, and adaptation options to, extreme weather events and climate change concerning thermal power plants

  • Jeannette SieberEmail author


Extreme weather events and changed climate parameters have impacts on power plants and their connected infrastructures. Therefore, adaptation, especially in the context of a changing climate and a resulting shift in the intensity and frequency of extreme events, is necessary. Thermal power plants are subject to a diversity of extreme weather impacts, making them vulnerable if not adapted. In this paper, the impacts of extreme weather events on thermal power plants are first identified and structured. Then selected adaptation options for thermal power plants are presented. Three major types of adaptation option are identified: adaptation of cooling, infrastructure, and sites. The Supplementary Material introduces a GIS-based (Geographic Information System) decision-support tool for power plant adaptation and planning.


Power Plant Thermal Power Plant Extreme Weather Event Adaptation Option Cool Tower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2013_915_MOESM1_ESM.pdf (263 kb)
ESM 1 (PDF 263 kb)


  1. ADAM (2009) Policy Appraisal for the Electricity Sector: Impacts, Mitigation, Adaptation, and long term investments for technological change: project no. 018476-GOCE. Adaptation and Mitigation Strategies: Supporting European Climate Policy, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United KingdomGoogle Scholar
  2. Auld H, MacIver D, Klaassen J (2007) Adaptation options for infrastructure under changing climate conditions. Environment Canada, TorontoGoogle Scholar
  3. Bailey JRB, Levitan ML (2008) Lessons learned and mitigation options for hurricanes. Process Saf Prog 27:41–47. doi: 10.1002/prs.10218 CrossRefGoogle Scholar
  4. Botzen WJW, Bouwer LM, van den Bergh JCJM (2010) Climate change and hailstorm damage: empirical evidence and implications for agriculture and insurance. Resour Energy Econ 32:341–362. doi: 10.1016/j.reseneeco.2009.10.004 CrossRefGoogle Scholar
  5. Bradshaw S, Glasser D, Brooks K (1991) Self-ignition and convection patterns in an infinite coal layer. Chem Eng Commun 105:255–278. doi: 10.1080/00986449108911530 CrossRefGoogle Scholar
  6. Budnitz RJ (1984) External initiators in probabilistic reactor accident analysis-earthquakes, fires, floods, winds. Risk Anal 4(4):323–335. doi: 10.1111/j.1539-6924.1984.tb00951.x CrossRefGoogle Scholar
  7. BUWAL, BWG, MeteoSwiss (2004) Schriftenreihe Umwelt Nr. 369: Auswirkungen des Hitzesommers 2003 auf die Gewässer. Bundesamt für Umwelt, Wald und Landschaft, BernGoogle Scholar
  8. Cai S, Chen FF, Soo SL (1983) Wind penetration into a porous storage pile and use of barriers. Environ Sci Technol 17:298–305. doi: 10.1021/es00111a011 CrossRefGoogle Scholar
  9. Center for Health and Global Environment, Swiss Re, UNDP (2005) Climate change futures: health‚ ecological and economic dimensions. Harvard Medical School, BostonGoogle Scholar
  10. Chakraborti SK (1995) American electric power’s coal pile management program. Bulk Solids Handling 15(3):421–428Google Scholar
  11. Chang JI, Lin C-C (2006) A study of storage tank accidents. J Loss Prev Process Ind 19:51–59. doi: 10.1016/j.jlp.2005.05.015 CrossRefGoogle Scholar
  12. de Bruin K, Dellink RB, Ruijs A et al (2009) Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives. Clim Chang 95:23–45. doi: 10.1007/s10584-009-9576-4 CrossRefGoogle Scholar
  13. DOE/NETL (2007) Potential impacts of climate change on the energy sector. Department of Energy, PittsburghGoogle Scholar
  14. DOE/NETL (2013) Electric disturbance events (OE-417) Annual summaries. Department of Energy Accessed 28 August 2013
  15. DTE Energy Company (2013) Outage Causes. Accessed 28 August 2013
  16. ENA (2009) Energy network infrastructure and the climate change challenge. Energy Networks Association, KingstonGoogle Scholar
  17. EPRI (2009) Key climate variables relevant to the energy sector and electric utilities. Electric Power Research Institute, Palo AltoGoogle Scholar
  18. Federal Institute for Hydrology (2006) BfG-Mitteilung Nr. 27: Niedrigwasserperiode 2003 in Deutschland: Ursache-Wirkungen-Folgen. Bundesanstalt für Gewässerkunde, Koblenz, GermanyGoogle Scholar
  19. Feeley TJ III, Skone TJ, Striegel GJ Jr et al (2008) Water: a critical resource in the thermoelectric power industry. Energy 33:1–11. doi: 10.1016/ CrossRefGoogle Scholar
  20. Fierro V, Miranda JL, Romero C et al (1999) Prevention of spontaneous combustion in coal stockpiles: experimental results in coal storage yard. Fuel Process Technol 59:23–34. doi: 10.1016/S0378-3820(99)00005-3 CrossRefGoogle Scholar
  21. Furlong D (1974) The cooling tower business today. Environ Sci Technol 8:712–716. doi: 10.1021/es60093a014 CrossRefGoogle Scholar
  22. Gorbatchev A, Mattéi JM, Rebour V, Vial E (1999) Report on flooding of Le Blayais power plant on 27 december 1999. EUROSAFE. Accessed 7 May 2013
  23. Habersack H, Moser A (2003) Ereignisdokumentation Hochwasser August 2002. Zentrum für Naturgefahren und Risikomanagement. Universität für Bodenkultur Wien, ViennaGoogle Scholar
  24. Hatt R (2001) Handling coal: Sticky when wet. PowerOnline. Accessed 19 April 2013
  25. Hatt R (2003) Moisture impacts on coal handling and heat rate. Coal Combustion, Inc. Accessed 7 May 2013
  26. Hatt R (2004) coal quality and combustion workshop. Coal Combustion, Inc. Accessed 7 May 2013
  27. Heymann E (2007) Climate change and sectors: Some like it hot! Deutsche Bank Research‚ Energy and Climate change. Accessed 19 April 2013
  28. Hoffmann B, Häfele S, Müller U, Karl U (2010) Analysis of the impact of changing hydrometeorological parameters on the electricity production of once-through cooled thermal power plants in Germany- A System Dynamics modelling approach. International Conference on Energy, Environment and Health, May 31-June 2 2010, Copenhagen, DenmarkGoogle Scholar
  29. IAEA (2003) Extreme external events in the design and assessment of nuclear power plants. International Atomic Energy Agency, ViennaGoogle Scholar
  30. IEA (2006) World energy outlook 2006. International Energy Agency, ParisCrossRefGoogle Scholar
  31. IPCC (2001) Climate change 2001: Impacts, adaptation, and vulnerability. contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. IPCC (2012) In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change Adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Kirkinen J, Martikainen A, Holttinen H et al (2005) Impacts on the energy sector and adaptation of the electricity network business under a changing climate in Finland: FINADAPT Working Paper 10. Finnish Environment Institute Mimeographs 240, HelsinkiGoogle Scholar
  34. Krausmann E, Mushtaq F (2008) A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Natl Hazards 46(2):179–197. doi: 10.1007/s11069-007-9203-5 CrossRefGoogle Scholar
  35. Krysanova V, Hattermann F (2007) Towards adaptation to impacts of climate change. NeWater Policy Brief 6:1–8Google Scholar
  36. Kundzewicz ZW, Kaczmarek Z (2000) Coping with hydrological extremes. Water Int 25:66–75. doi: 10.1080/02508060008686798 CrossRefGoogle Scholar
  37. Leary N (2004) Investing in science to enhance knowledge and capacity for adaptation in developing countries. Side event of the 10th Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change: Science in Support of Adaptation to Climate Change, 7 December 2004, Buenos Aires, ArgentinaGoogle Scholar
  38. Linnenluecke MK, Griffiths A, Winn M (2012) Extreme weather events and the critical importance of anticipatory adaptation and organizational resilience in responding to impacts. Bus Strategy Environ 21:17–32. doi: 10.1002/bse.708 CrossRefGoogle Scholar
  39. Maulbetsch J, Zammit K (2003) Cooling system retrofit costs. EPA Workshop on Cooling Water Intake Technologies, May 6 2003, Arlington, VA, USAGoogle Scholar
  40. Mills E (2007) Synergisms between climate change mitigation and adaptation: an insurance perspective. Mitig Adapt Strateg Glob Change 12(5):809–842. doi: 10.1007/s11027-007-9101-x CrossRefGoogle Scholar
  41. O’Connell M, Hargreaves R (2004) Study Report No. 130: Climate change adaptation. Guidance on adapting New Zealand’s built environment for the impacts of climate change. BRANZ. Accessed 22 April 2013
  42. Ott HE, Richter C (2008) Anpassung an den Klimawandel-Risiken und Chancen für deutsche Unternehmen. Wuppertal Institut für Klima Umwelt und Energie. Wuppertal, GermanyGoogle Scholar
  43. Parkpoom S, Harrison GP, Bialek JW (2004) Climate and weather uncertainty in the electricity industry. School of Engineering at the University of Edinburgh. Accessed 7 May 2013
  44. Paskal C (2009) Briefing paper: the vulnerability of energy infrastructure to environmental change. Chatham House, LondonGoogle Scholar
  45. Rademaekers K, van der Laan J, Boeve S, Lise W (2011) Investment needs for future adaptation measures in EU nuclear power plants and other electricity generation technologies due to effects of climate change: final report. European Commission, BrusselsGoogle Scholar
  46. Sieber J (2013): Impacts of extreme hydro-meteorological events on electricity generation and possible adaptation measures—A GIS-based approach for corporate risk management and enhanced climate mitigation concepts in Germany. Universität Würzburg Dissertation, Germany
  47. Steininger KW, Steinreiber C, Binder C et al (2003) Adaptationsstrategien der von extremen Wetterereignissen betroffenen Wirtschaftssektoren: ökonomische Bewertung und die Rolle der Politik. Institut für Meteorologie und Physik. Universität für Bodenkultur Wien, Vienna, AustriaGoogle Scholar
  48. Stock M (2009) Hat der Klimawandel Auswirkungen auf die Anlagensicherheit? Chem Ing Technik 81:119–126CrossRefGoogle Scholar
  49. Thomalla F, Downing T, Spanger-Siegfried E et al (2006) Reducing hazard vulnerability: towards a common approach between disaster risk reduction and climate adaptation. Disasters 20:39–48. doi: 10.1111/j.1467-9523.2006.00305.x CrossRefGoogle Scholar
  50. UNFCCC (2006) Technologies for adaptation to climate change. United Nations Framework Convention on Climate Change. Accessed 19 April 2013
  51. van Vliet MTH, Yearsley JR, Ludwig F et al (2012) Vulnerability of US and European electricity supply to climate change. Nature Clim Change 2(9):676–681. doi: 10.1038/nclimate1546 Google Scholar
  52. Vaurio JK (1998) Safety-related decision making at a nuclear power plant. Nuc Eng Des 185:335–345. doi: 10.1016/S0029-5493(98)00225-8 CrossRefGoogle Scholar
  53. Ward (2013) The effect of weather on grid systems and the reliability of electricity supply. Clim Chang (this special issue)Google Scholar
  54. Young S, Balluz L, Malilay J (2004) Natural and technologic hazardous material releases during and after natural disasters: a review. Sci Total Environ 322:3–20. doi: 10.1016/S0048-9697(03)00446-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.European Institute for Energy Research (EIFER)KarlsruheGermany

Personalised recommendations