Climatic Change

, Volume 136, Issue 1, pp 127–140 | Cite as

Implications of weak near-term climate policies on long-term mitigation pathways

  • Gunnar LudererEmail author
  • Christoph Bertram
  • Katherine Calvin
  • Enrica De Cian
  • Elmar Kriegler


While the international community has agreed on the long-term target of limiting global warming to no more than 2 °C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world’s regions. These scenarios clearly fall short of limiting warming to 2 °C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO2e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO2e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable.


Emission Reduction Climate Policy Carbon Price Mitigation Cost Carbon Prex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Stiftung Mercator in the context of the RoSE project.

Supplementary material

10584_2013_899_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1.73 mb)


  1. Bauer N, Mouratiadou I et al. (2013) Global fossil energy markets and climate change mitigation – an analysis with ReMIND. Clim Change. doi: 10.1007/s10584-013-0901-6
  2. Bosetti V, Carraro C, Galeotti M, Massetti E, Tavoni M (2006) WITCH - A world induced technical change hybrid model. The Energy Journal, Special Issue Hybrid Modeling of Energy-Environment Policies: Reconciling Bottom-up and Top-down:13–38Google Scholar
  3. Calvin K, Edmonds J, Bond-Lamberty B, Clarke L, Kim SH, Kyle P, Smith SJ, Thomson A, Wise M (2009a) 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ 31(Supplement 2):S107–S120. doi: 10.1016/j.eneco.2009.06.006 CrossRefGoogle Scholar
  4. Calvin K, Patel P, Fawcett A, Clarke L, Fisher-Vanden K, Edmonds J, Kim SH, Sands R, Wise M (2009b) The distribution and magnitude of emissions mitigation costs in climate stabilization under less than perfect international cooperation: SGM results. Energy Econ 31(Supplement 2):S187–S197. doi: 10.1016/j.eneco.2009.06.014 CrossRefGoogle Scholar
  5. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: overview of the EMF 22 International scenarios. Energy Econ 31(Supplement 2):S64–S81. doi: 10.1016/j.eneco.2009.10.013 CrossRefGoogle Scholar
  6. De Cian E, Sferra F, Tavoni M (2013) The influence of economic growth, population, and fossil fuel scarcity on energy investments. Clim Chang. doi: 10.1007/s10584-013-0902-5
  7. Jakob M, Luderer G, Steckel J, Tavoni M, Monjon S (2012) Time to act now? Assessing the costs of delaying climate measures and benefits of early action. Clim Chang 114:79–99. doi: 10.1007/s10584-011-0128-3 CrossRefGoogle Scholar
  8. Kriegler E, Mouratiadou I et al (submitted for this issue) Will economic growth and fossil fuel scarcity help or hinder climate stabilization? Overview of the RoSE multi-model study. Clim ChangGoogle Scholar
  9. Kriegler E, Petermann N et al (2013) Diagnosing integrated assessment models of climate policy. Technol Forecas Soc Change submittedGoogle Scholar
  10. Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010) Mitigation costs in a globalized world: climate policy analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8 CrossRefGoogle Scholar
  11. Luderer G, Bosetti V, Jakob M, Leimbach M, Steckel J, Waisman H, Edenhofer O (2012a) The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Clim Chang 114:9–37. doi: 10.1007/s10584-011-0105-x CrossRefGoogle Scholar
  12. Luderer G, DeCian E, Hourcade J-C, Leimbach M, Waisman H, Edenhofer O (2012b) On the regional distribution of mitigation costs in a global cap-and-trade regime. Clim Chang 114:59–78. doi: 10.1007/s10584-012-0408-6 CrossRefGoogle Scholar
  13. Luderer G, Pietzcker RC, Kriegler E, Haller M, Bauer N (2012c) Asia’s role in mitigating climate change: a technology and sector specific analysis with ReMIND-R. Energy Econ. doi: 10.1016/j.eneco.2012.07.022 Google Scholar
  14. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162. doi: 10.1038/nature08017 CrossRefGoogle Scholar
  15. Meinshausen M, Wigley TML, Raper SCB (2011) Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – part 2: applications. Atmos Chem Phys 11:1457–1471. doi: 10.5194/acp-11-1457-2011 CrossRefGoogle Scholar
  16. Rogelj J, Nabel J, Chen C, Hare W, Markmann K, Meinshausen M, Schaeffer M, Macey K, Hohne N (2010) Copenhagen accord pledges are paltry. Nature 464:1126–1128. doi: 10.1038/4641126a CrossRefGoogle Scholar
  17. Rogelj J, Hare W, Lowe J, van Vuuren DP, Riahi K, Matthews B, Hanaoka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2 °C global temperature limit. Nat Clim Chang 1:413–418. doi: 10.1038/nclimate1258 CrossRefGoogle Scholar
  18. UNEP (2010) The Emissions Gap Report - Are the Copenhagen Accord Pledges Sufficient to Limit Global Warming to 2°C or 1.5°C? United Nations Environment Programme, Nairobi, Scholar
  19. UNEP (2011) Bridging the emissions gap report. United Nations Environment Programme, Nairobi, Scholar
  20. Van Vliet J, van den Berg M, Schaeffer M, van Vuuren D, den Elzen M, Hof A, Mendoza Beltran A, Meinshausen M (2012) Copenhagen accord pledges imply higher costs for staying below 2°C warming. Clim Chang 113:551–561. doi: 10.1007/s10584-012-0458-9 CrossRefGoogle Scholar
  21. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gunnar Luderer
    • 1
    Email author
  • Christoph Bertram
    • 1
  • Katherine Calvin
    • 2
  • Enrica De Cian
    • 3
  • Elmar Kriegler
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Joint Global Change Research Institute/Pacific Northwest National LaboratoryCollege ParkUSA
  3. 3.Fondazione Eni Enrico Mattei (FEEM) and Euro-Mediterranean Center on Climate Change (CMCC)MilanItaly

Personalised recommendations