Climatic Change

, Volume 123, Issue 3–4, pp 691–704 | Cite as

Trade-offs of different land and bioenergy policies on the path to achieving climate targets

  • Katherine Calvin
  • Marshall Wise
  • Page Kyle
  • Pralit Patel
  • Leon Clarke
  • Jae Edmonds


Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, emissions and mitigation costs of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument, but with five alternative bioenergy and land-use policy architectures. These scenarios are illustrative in nature, and designed to explore trade-offs. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy penalties and constraints, on the other hand, have little effect on food prices, but result in less bioenergy and thus can increase mitigation costs and energy prices.


Carbon Emission Food Price Carbon Price Bioenergy Production Bioenergy Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for research support provided by the Integrated Assessment Research Program in the Office of Science of the U.S. Department of Energy and the Global Technology Strategy Program. This research used Evergreen computing resources at the Pacific Northwest National Laboratory’s (PNNL) Joint Global Change Research Institute at the University of Maryland in College Park. The views and opinions expressed in this paper are those of the authors alone.

Supplementary material

10584_2013_897_MOESM1_ESM.docx (1015 kb)
ESM 1 (DOCX 1015 kb)


  1. Calvin K, Patel P, Fawcett A, Clarke L, Fisher-Vanden K, Edmonds J, Kim S, Sands R, Wise M (2009) The distribution and magnitude of emissions mitigation costs in climate stabilization under less than perfect international cooperation: SGM results. Energ Econ 31:S187–S197CrossRefGoogle Scholar
  2. Calvin K, Clarke L, Edmonds J, Eom J, Hejazi M, Kim S, Kyle P, Link R, Luckow P, Patel P (2011) GCAM Wiki documentation. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  3. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, CambridgeGoogle Scholar
  4. Edmonds J, Clarke J, Dooley J, Kim S, Izaurralde R, Rosenberg N, Stokes G (2003) The potential role of biotechnology in addressing the long-term problem of climate change in the context of global energy and economic systems. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies—6th International Conference. Pergamon, Oxford, pp 1427–1432CrossRefGoogle Scholar
  5. EPA (2010) Prevention of significant deterioration and title v greenhouse gas tailoring rule; final rule. Federal Register, volume 75, number 106.
  6. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1239CrossRefGoogle Scholar
  7. Fisher BS, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, van Vuuren D, Warren R (2007) Issues related to mitigation in the long term context. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the inter-governmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  8. Gillingham K, Smith SJ, Sands R (2008) Impact of bioenergy crops in a carbon constrained world: an application of the MiniCAM linked energy-agriculture and land use model. Mitig Adapt 13:675–701CrossRefGoogle Scholar
  9. Gurgel A, Reilly J, Paltsev S (2007) Potential land use implications of a global biofuels industry. J Agr Food Ind Organ 5:Article 9Google Scholar
  10. Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2013) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang. doi: 10.1007/s10584-013-0953-7
  11. Kyle P, Luckow P, Calvin K, Emanuel W, Nathan M, Zhou Y (2011) GCAM 3.0 agriculture and land use: data sources and methods. Pacific Northwest National Laboratory, RichlandCrossRefGoogle Scholar
  12. Mellilo J, Reilly J, Kicklighter D, Gurgel A, Cronin T, Paltsev S, Felzer B, Wang X, Sokolov A, Schlosser A (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399CrossRefGoogle Scholar
  13. Monfreda C, Ramankutty N, Hertel T (2009) Global agricultural land use data for climate change analysis. In: Hertel T, Rose S, Tol R (eds) Economic analysis of land use in global climate change policy. RoutledgeGoogle Scholar
  14. Popp A, Krause M, Dietrich JP, Lotze-Campen H, Leimbach M, Beringer T, Bauer N (2012) Additional CO2 emissions from land use change—forest conservation as a precondition for sustainable production of second generation bioenergy. Ecol Econ 74:64–70CrossRefGoogle Scholar
  15. Reilly J, Mellilo J, Cai Y, Kicklighter D, Gurgel A, Paltsev S, Cronin T, Sokolov A, Schlosser A (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ Sci Tech 46:5672–5679CrossRefGoogle Scholar
  16. Schmer M, Vogel K, Mitchell R, Perrin R (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci 105:464–469CrossRefGoogle Scholar
  17. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1240CrossRefGoogle Scholar
  18. Strengers BJ, van Minnen JG, Eickout B (2008) The role of carbon plantations in mitigating climate change: potentials and costs. Clim Chang 88:343–366CrossRefGoogle Scholar
  19. Thomson AM, Calvin K, Smith SJ, Kyle P, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise M, Clarke L, Edmonds J (2011) RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94CrossRefGoogle Scholar
  20. UN (1992) United Nations framework convention on climate change. United Nations, New YorkGoogle Scholar
  21. United Nations (2008) Programme on reducing emissions from deforestation and forest degradation in developing countries (UN-REDD)Google Scholar
  22. United Nations (2012) United Nations REDD ProgrammeGoogle Scholar
  23. Wise M, Calvin K (2011) GCAM 3.0 agriculture and land use: technical description of modeling approach. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  24. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Katherine Calvin
    • 1
  • Marshall Wise
    • 1
  • Page Kyle
    • 1
  • Pralit Patel
    • 1
  • Leon Clarke
    • 1
  • Jae Edmonds
    • 1
  1. 1.Joint Global Change Research InstituteCollege ParkUSA

Personalised recommendations