Advertisement

Climatic Change

, Volume 120, Issue 1–2, pp 389–403 | Cite as

Regional hydrological cycle changes in response to an ambitious mitigation scenario

  • H. HuebenerEmail author
  • M. G. Sanderson
  • I. Höschel
  • J. Körper
  • T. C. Johns
  • J.-F. Royer
  • E. Roeckner
  • E. Manzini
  • J.-L. Dufresne
  • O. H. Otterå
  • J. Tjiputra
  • D. Salas y Melia
  • M. Giorgetta
  • S. Denvil
  • P. G. Fogli
Article

Abstract

Climate change impacts on the regional hydrological cycle are compared for model projections following an ambitious emissions-reduction scenario (E1) and a medium-high emissions scenario with no mitigation policy (A1B). The E1 scenario is designed to limit global annual mean warming to 2 °C or less above pre-industrial levels. A multi-model ensemble consisting of ten coupled atmosphere–ocean general circulation models is analyzed, which includes five Earth System Models containing interactive carbon cycles. The aim of the study is to assess the changes that could be mitigated under the E1 scenario and to identify regions where even small climate change may lead to strong changes in precipitation, cloud cover and evapotranspiration. In these regions the hydrological cycle is considered particularly vulnerable to climate change, highlighting the need for adaptation measures even if strong mitigation of climate change would be achieved. In the A1B projections, there are significant drying trends in sub-tropical regions, precipitation increases in high latitudes and some monsoon regions, as well as changes in cloudiness and evapotranspiration. These signals are reduced in E1 scenario projections. However, even under the E1 scenario, significant precipitation decrease in the subtropics and increase in high latitudes are projected. Particularly the Amazon region shows strong drying tendencies in some models, most probably related to vegetation interaction. Where climate change is relatively small, the E1 scenario tends to keep the average magnitude of potential changes at a level comparable to current intra-seasonal to inter-annual variability at that location. Such regions are mainly located in the mid-latitudes.

Keywords

Cloud Cover Hydrological Cycle Precipitation Change Ocean General Circulation Model High Northern Latitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The ENSEMBLES model outputs used in this work were produced with the partial funding of the EU FP6 Integrated Project ENSEMBLES (Contract number 505539), whose support is gratefully acknowledged. MGS and TCJ were also supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101).

Supplementary material

10584_2013_829_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1374 KB)

References

  1. Advancing the Durban Platform (2013) In: Report of the Conference of the Parties on its eighteenth session, held in Doha from 26 November to 8 December 2012, Addendum, Part Two: action taken by the Conference of the Parties at its eighteenth session, http://unfccc.int/resource/docs/2012/cop18/eng/08a01.pdf
  2. Arnell AW, Lowe JA, Brown S, Gosling SN, Gottschalk P, Hinkel J, Lloyd-Hughes B, Nicholls RJ, Osborne TJ, Osborne TM, Rose GA, Smith P, Warren RF (2013) A global assessment of the effects of climate policy on the impacts of climate change. Nat Clim Chang. doi: 10.1038/NCLIMATE1793 Google Scholar
  3. Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78(1–3):157–175Google Scholar
  4. Christensen JH et al (2007) Regional climate projections. Chapter 11. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Scientific Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  5. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of the HadGEM2 model. Met Office Hadley Centre Technical Note No. 74, Met Office, Exeter, 47 ppGoogle Scholar
  6. Copenhagen Accord (2009) Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009, Addendum Part Two: action taken by the Conference of the Parties at its fifteenth session. http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf
  7. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Chang 114:813–822. doi: 10.1007/s10584-012-0570-x CrossRefGoogle Scholar
  8. Donner SD (2009) Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 4:e5712. doi: 10.1371/journal.pone.0005712 CrossRefGoogle Scholar
  9. Fogli PG et al (2009) INGV-CMCC Carbon: a carbon cycle earth system model, CMCC RP0061 (http://www.cmcc.it/publicationsmeetings/publications/research-papers/rp0061-ingv-cmcc-carbonicc-a-carbon-cycle-earth-system-model)
  10. Fung F, Lopez A, New M (2011) Water availability in +2°C and +4°C worlds. Phil Trans R Soc A 369(1934):99–116. doi: 10.1098/rsta.2010.0293 CrossRefGoogle Scholar
  11. Giorgi F, Bi X (2005) Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys Res Lett 32: doi: 10.1029/2005GL024288
  12. Hegerl GC et al (2007) Understanding and attributing climate change. Chapter 9. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Scientific Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  13. Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS Trans AGU 88:217–221CrossRefGoogle Scholar
  14. Johns TC, Royer J-F, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne J-L, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta M, Denvil S, Yang S, Fogli PG, Körper J, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Clim Dyn. doi: 10.1007/s00382-011-1005-5 Google Scholar
  15. Körper J, Höschel I, Lowe JA, Hewitt CD, Salas y Melia D, Roeckner E, Huebener H, Royer J-F, Dufresne J-L, Pardaens A, Giorgetta MA, Sanderson MG, Otterå OH, Tjiputra J, Denvil S (2013) The effects of aggressive mitigation on steric sea level rise and sea ice changes. Clim Dyn 40(3–4):531–550. doi: 10.1007/s00382-012-1612-9 CrossRefGoogle Scholar
  16. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmospherebiosphere system. Glob Biogeochem Cycles 19:GB1015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  17. Le Quéré C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836. doi: 10.1038/ngeo689 CrossRefGoogle Scholar
  18. Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E, Royer JF, van der Linden PJ (2009) New study for climate modeling, analyses, and scenarios. EOS Trans AGU 90:181–182CrossRefGoogle Scholar
  19. May W (2008) Climatic changes associated with a global “2°C-stabilization” scenario simulated by the ECHAM5/MPI-OM coupled climate model. Clim Dyn 31:283–313CrossRefGoogle Scholar
  20. May W (2011) Assessing the strength of regional changes in near-surface climate associated with a global warming of 2°C. Clim Chang. doi: 10.1007/s10584-011-0076-y Google Scholar
  21. Meehl GA et al (2007) Global climate projections. Chapter 10. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Scientific Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  22. Mischchenko MI et al (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543CrossRefGoogle Scholar
  23. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  24. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  25. Nakicenovic NJ et al (2000) IPCC special report on emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  26. New M, Liverman D, Schroder H, Anderson K (2011) Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Phil Trans R Soc A 369(1934):6–19. doi: 10.1098/rsta.2010.0303 CrossRefGoogle Scholar
  27. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marsland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4–6CrossRefGoogle Scholar
  28. Rowell DP (2011) Sources of uncertainty in future changes in local precipitation. Clim Dyn. doi: 10.1007/s00382-011-1210-2 Google Scholar
  29. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. JGR Atm. 118:1716–1733. doi: 10.1002/jgrd.50203 Google Scholar
  30. Streets DG et al (2006) Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett 33:L15806. doi: 10.1029/2006GL026471 CrossRefGoogle Scholar
  31. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  32. van der Linden P, Mitchell JFB (eds.) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. 160ppGoogle Scholar
  33. van Vuuren DP, Riahi K (2011) The relationship between short-term emissions and long-term concentration targets. Clim Chang 104:793–801. doi: 10.1007/s10584-010-0004-6 CrossRefGoogle Scholar
  34. van Vuuren DP, den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81:119–159. doi: 10.1007/s10584-006-9172-9 CrossRefGoogle Scholar
  35. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • H. Huebener
    • 1
    Email author
  • M. G. Sanderson
    • 2
  • I. Höschel
    • 3
  • J. Körper
    • 3
  • T. C. Johns
    • 2
  • J.-F. Royer
    • 4
  • E. Roeckner
    • 5
  • E. Manzini
    • 5
    • 6
    • 7
  • J.-L. Dufresne
    • 8
  • O. H. Otterå
    • 9
    • 10
    • 11
  • J. Tjiputra
    • 10
    • 11
  • D. Salas y Melia
    • 4
  • M. Giorgetta
    • 5
  • S. Denvil
    • 8
  • P. G. Fogli
    • 7
  1. 1.Hessian Agency for Environment and GeologyWiesbadenGermany
  2. 2.Met Office Hadley CentreExeterUK
  3. 3.Freie Universität Berlin, Institut für MeteorologieBerlinGermany
  4. 4.Centre National de Recherches Météorologiques-Groupe d’Etude de l’Atmosphère Météorologique (CNRM-GAME Meteo-France CNRS)ToulouseFrance
  5. 5.Max Planck Institute for MeteorologyHamburgGermany
  6. 6.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  7. 7.Centro EuroMediterraneo per i Cambiamenti ClimaticiBolognaItaly
  8. 8.CNRS et Université Pierre et Marie CurieParis Cédex 05France
  9. 9.Nansen Environmental and Remote Sensing CenterBergenNorway
  10. 10.Bjerknes Centre for Climate ResearchBergenNorway
  11. 11.Uni Climate, Uni ResearchBergenNorway

Personalised recommendations