Climatic Change

, Volume 121, Issue 3, pp 445–458 | Cite as

Studying geoengineering with natural and anthropogenic analogs

  • Alan RobockEmail author
  • Douglas G. MacMartin
  • Riley Duren
  • Matthew W. Christensen


Solar radiation management (SRM) has been proposed as a possible option for offsetting some anthropogenic radiative forcing, with the goal of reducing some of the associated climatic changes. There are clearly significant uncertainties associated with SRM, and even small-scale experiments that might reduce uncertainty would carry some risk. However, there are also natural and anthropogenic analogs to SRM, such as volcanic eruptions in the case of stratospheric aerosol injection and ship tracks in the case of marine cloud albedo modification. It is essential to understand what we can learn from these analogs in order to validate models, particularly because of the problematic nature of outdoor experiments. It is also important to understand what we cannot learn, as this might better focus attention on what risks would need to be solely examined by numerical models. Stratospheric conditions following a major volcanic eruption, for example, are not the same as those to be expected from intentional geoengineering, both because of confounding effects of volcanic ash and the differences between continuous and impulsive injection of material into the stratosphere. Nonetheless, better data would help validate models; we thus recommend an appropriate plan be developed to better monitor the next large volcanic eruption. Similarly, more could be learned about cloud albedo modification from careful study not only of ship tracks, but of ship and other aerosol emission sources in cloud regimes beyond the narrow conditions under which ship tracks form; this would benefit from improved satellite observing capabilities.


Volcanic Eruption Cloud Condensation Nucleus Solar Radiation Management Stratospheric Aerosol Aerosol Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Keck Institute for Space Studies for funding two workshops at the California Institute of Technology where we discussed topics in this paper, and all of the participants of these workshops who contributed ( A. Robock is supported by NSF grant AGS-1157525. The work by R. Duren was done at the Jet Propulsion Laboratory, a division of the California Institute of Technology under contract to the National Aeronautics and Space Administration.


  1. Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432(7020):1014–1017CrossRefGoogle Scholar
  2. Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37(L22703). doi: 10.1029/2010GL044843
  3. Bernard A, Rose WI Jr (1990) The injection of sulfuric acid aerosols in the stratosphere by El Chichón volcano and its related hazards to the international air traffic. Nat Hazard 3:59–67CrossRefGoogle Scholar
  4. Bluth GJS, Doiron SD, Krueger AJ, Walter LS, Schnetzler CC (1992) Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154CrossRefGoogle Scholar
  5. Budyko MI (1977) Climatic changes. American Geophysical Society, Washington, D.C, 244 ppCrossRefGoogle Scholar
  6. Caldeira K, Keith DW (2010, Fall) The need for climate engineering research. Issues in Sci. and Tech. 57–62Google Scholar
  7. Capaldo K, Corbett JJ, Kaslbhatla P, Fischbeck P, Pandls SN (1999) Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature 400:743–746CrossRefGoogle Scholar
  8. Chen Y-C et al (2012) Occurrence of lower cloud albedo in ship tracks. Atmos Chem Phys 12:8223–8235. doi: 10.5194/acp-12-8223-2012 CrossRefGoogle Scholar
  9. Christensen MW, Stephens GL (2011) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J Geophys Res 116(D03201). doi: 10.1029/2010JD014638
  10. Christensen MW, Stephens GL (2012) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J Geophys Res 117(D11203). doi: 10.1029/2011JD017125
  11. Coakley JA Jr et al (2000) The appearance and disappearance of ship tracks on large spatial scales. J Atmos Sci 57:2765–2778CrossRefGoogle Scholar
  12. Crutzen P (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77:211–219CrossRefGoogle Scholar
  13. Deshler T, Hervig ME, Hofmann DI, Rosen JM, Liley JB (2003) Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J Geophys Res 108(D5):4167. doi: 10.1029/2002JD002514 CrossRefGoogle Scholar
  14. Dong G, Gregory JM, Sutton RT (2009) Understanding land-sea warming contrast in response to increased greenhouse gases. Part I: Transient adjustment. J Clim 22:3079–3097CrossRefGoogle Scholar
  15. Durkee PA, Noone KJ, Bluth RT (2000) The Monterey area ship track experiment. J Atmos Sci 57:2523–2541CrossRefGoogle Scholar
  16. English JM, Toon OB, Mills MJ, Yu F (2011) Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere. Atmos Chem Phys 11:9303–9322. doi: 10.5194/acp-11-9303-2011 CrossRefGoogle Scholar
  17. English JM, Toon OB, Mills MJ (2012) Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmos Chem Phys 12:4775–4793. doi: 10.5194/acp-12-4775-2012 CrossRefGoogle Scholar
  18. English JM, Toon OB, Mills MJ (2013) Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J Geophys Res in press. doi: 10.1002/jgrd.50196
  19. GAO (2011) Climate engineering: technical status, future directions, and potential responses. Report GAO-11-71. Government Accountability Office, Washington, DC, 135 ppGoogle Scholar
  20. Gao C, Oman L, Robock A, Stenchikov GL (2007) Atmospheric volcanic loading derived from bipolar ice cores accounting for the spatial distribution of volcanic deposition. J Geophys Res 112(D09109). doi: 10.1029/2006JD007461
  21. Gassó S (2008) Satellite observations of the impact of weak volcanic activity on marine clouds. J Geophys Res 113(D14S19). doi: 10.1029/2007JD009106
  22. Goren T, Rosenfeld D (2012) Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J Geophys Res 117(D17206) doi: 10.1029/2012JD017981
  23. Heckendorn P, Weisenstein D, Fueglistaler S, Luo BP, Rozanov E, Schraner M, Thomason LW, Peter T (2009) The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ Res Lett 4. doi: 10.1088/1748-9326/4/4/045108
  24. Hendricks J, Lippert E, Petry H, Ebel A (1999) Heterogeneous reactions on and in sulphate aerosols: implications for the chemistry of the midlatitude tropopause region. J Geophys Res 104:5531–5550CrossRefGoogle Scholar
  25. Hommel R, Graf HF (2010) Modelling the size distribution of geoengineered stratospheric aerosols. Atmos Sci Lett 12:168–175. doi: 10.1002/asl.285 CrossRefGoogle Scholar
  26. International Maritime Organization (1998) Regulations for the prevention of air pollution from ships and NOx technical code. ANNEX VI of MARPOL 73/78, LondonGoogle Scholar
  27. Jones A, Haywood J, Boucher O (2009) Climate impacts of geoengineering marine stratocumulus clouds. J Geophys Res 114(D10106). doi: 10.1029/2008JD011450
  28. Kravitz B, Robock A (2011) The climate effects of high latitude volcanic eruptions: the role of the time of year. J Geophys Res 116(D01105). doi: 10.1029/2010JD014448
  29. Kravitz B, Robock A, Boucher O, Schmidt H, Taylor K, Stenchikov G, Schulz M (2011) The Geoengineering Model Intercomparison Project (GeoMIP). Atmos Sci Lett 12:162–167. doi: 10.1002/asl.316 CrossRefGoogle Scholar
  30. Kravitz B, MacMartin DG, Caldeira K (2012) Geoengineering: whiter skies? Geophys Res Lett 39(L11801). doi: 10.1029/2012GL051652
  31. Kuebbeler M, Lohmann U, Feichter J (2012) Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds. Geophys Res Lett 39:L23803. doi: 10.1029/2012GL053797 CrossRefGoogle Scholar
  32. Latham J (1990) Control of global warming? Nature 347:339–340CrossRefGoogle Scholar
  33. Lauer A, Eyring V, Hendricks J, Jockel P, Lohmann U (2007) Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos Chem Phys 7:5061–5079. doi: 10.5194/acp-7-5061-2007 CrossRefGoogle Scholar
  34. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi: 10.5194/acp-5-715-2005 CrossRefGoogle Scholar
  35. Lohmann U, Karcher B, Timmreck C (2003) Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM. J Geophys Res 108(D18):4568. doi: 10.1029/2002JD003185 CrossRefGoogle Scholar
  36. Lu ML, Conant WC, Jonsson HH, Varutbangkul V, Flagan RC, Seinfeld JH (2007) The Marine Stratus/Stratocumulus Experiment (MASE): aerosol-cloud relationships in marine stratocumulus. J Geophys Res 112(D10209): doi: 10.1029/2006JD007985
  37. Lu M-L, Sorooshian A, Jonsson HH, Feingold G, Flagan RC, Seinfeld JH (2009) Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: precipitation susceptibility in eastern Pacific marine stratocumulus. J Geophys Res 114(D24203). doi: 10.1029/2009JD012774
  38. Luo ZZ, Rossow WB, Inoue T, Stubenrauch CJ (2002) Did the eruption of the Mt. Pinatubo volcano affect cirrus properties? J Clim 15:2806–2820CrossRefGoogle Scholar
  39. MacMynowski DG, Keith DW, Caldeira K, Shin HJ (2011a) Can we test geoengineering? Royal Soc J Energy Environ Sci 4(12):5044–5052CrossRefGoogle Scholar
  40. MacMynowski DG, Shin HJ, Caldeira K (2011b) The frequency response of temperature and precipitation in a climate model. Geophys Res Lett 38(L16711) doi: 10.1029/2011GL048623
  41. Massie S, Randel W, Wu F, Baumgardner D, Hervig M (2003) Halogen Occultation Experiment and Stratospheric Aerosol and Gas Experiment II observations of tropopause cirrus and aerosol during the 1990s. J Geophys Res 108(D7):4222. doi: 10.1029/2002JD002662 CrossRefGoogle Scholar
  42. Mercado LM et al (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018. doi: 10.1038/nature07949 CrossRefGoogle Scholar
  43. Murphy DM (2009) Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environ Sci Technol 48(8):2784–2786. doi: 10.1021/es802206b CrossRefGoogle Scholar
  44. Oman L, Robock A, Stenchikov GL, Thordarson T (2006) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett 33(L18711). doi: 10.1029/2006GL027665
  45. Otterå OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694CrossRefGoogle Scholar
  46. Peters K, Quaas J, Grassl H (2011) A search for large-scale effects of ship emissions on clouds and radiation in satellite data. J Geophys Res 116(D24205). doi: 10.1029/2011JD016531
  47. Pierce JR, Weisenstein DK, Heckendorn P, Peter T, Keith DW (2010) Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys Res Lett 37(L18805). doi: 10.1029/2010GL043975
  48. Ricke KL, Morgan MG, Allen MR (2010) Regional climate response to solar-radiation management. Nat Geosci 3:537–541CrossRefGoogle Scholar
  49. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  50. Robock A (2008) 20 reasons why geoengineering may be a bad idea. Bull Atomic Sci 64:14–18CrossRefGoogle Scholar
  51. Robock A (2012) Will geoengineering with solar radiation management ever be used? Ethics Policy Environ 15:202–205CrossRefGoogle Scholar
  52. Robock A, Liu Y (1994) The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations. J Clim 7:44–55CrossRefGoogle Scholar
  53. Robock A, Oman L, Stenchikov G (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113(D16101). doi: 10.1029/2008JD010050
  54. Robock A, Bunzl M, Kravitz B, Stenchikov G (2010) A test for geoengineering? Science 327:530–531. doi: 10.1126/science.1186237 CrossRefGoogle Scholar
  55. Russell LM et al (2013) Eastern Pacific emitted aerosol cloud experiment (E-PEACE). Bull Am Meteorol Soc, in press. doi: 10.1175/BAMS-D-12-00015
  56. Sassen K et al (1995) The 5–6 December 1991 FIRE IFO-II Jet-stream Cirrus case-study: possible influences of volcanic aerosols. J Atmos Sci 52:97–123CrossRefGoogle Scholar
  57. Sassen K, Wang Z, Liu D (2008) Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J Geophys Res 113(D00A12). doi: 10.1029/2008JD009972
  58. Schreier M, Mannstein H, Erying V, Bovensmann H (2007) Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys Res Lett 34(L17814). doi: 10.1029/2007GL030664
  59. Shepherd J et al (2009) Geoengineering the climate: science, governance and uncertainty, Royal Society Policy document 10/09. Royal Society, London, 82 ppGoogle Scholar
  60. Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling following the eruption of Mt. Pinatubo: a test of climate feedback by water vapor. Science 296:727–730CrossRefGoogle Scholar
  61. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316CrossRefGoogle Scholar
  62. Song NH, Starr DO, Wuebbles DJ, Williams A, Larson SM (1996) Volanic aerosols and interannual variation of high clouds. Geophys Res Lett 23:2657–2660CrossRefGoogle Scholar
  63. SRMGI (Solar Radiation Management Governance Initiative) (2011) Solar radiation management: the governance of research. Royal Society, London, 69 pp., Google Scholar
  64. Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuña JC, Grainger RG, Lambert A, Thomason L (1998) Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res 103:13,837–13,857CrossRefGoogle Scholar
  65. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng FR (2009) Volcanic signals in oceans. J Geophys Res 114(D16104). doi: 10.1029/2008JD011673
  66. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607-613. doi: 10.1038/nature08281 Google Scholar
  67. Stevens B et al (2003) Dynamics and chemistry of marine stratocumulus - DYCOM-III. Bull Am Meteorol Soc 84:579–593CrossRefGoogle Scholar
  68. Strong AE (1984) Monitoring El Chichón aerosol distribution using NOAA-7 satellite AVHRR sea surface temperature observations. Geofis Int 23:129–141Google Scholar
  69. Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1205. doi: 10.1126/science.1153966 CrossRefGoogle Scholar
  70. Timmreck C et al (2010) Aerosol size confines climate response to volcanic supereruptions. Geophys Res Lett 37(L24705). doi: 10.1029/2010GL045464
  71. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34(L15702). doi: 10.1029/2007GL030524
  72. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256CrossRefGoogle Scholar
  73. Vernier JP, Jumelet J (2011) Advances in forecasting volcanic plume evolution. SPIE Newsroom. doi: 10.1117/2.1201103.003530 Google Scholar
  74. Vernier JP et al (2009) Tropical stratospheric aerosol layer from CALIPSO lidar observations. J Geophys Res Lett 114(D00H10). doi: 10.1029/2009JD011946
  75. Wang H, Rasch PJ, Feingold G (2011) Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmos Chem Phys 11:4237–4249. doi: 10.5194/acp-11-4237-2011 CrossRefGoogle Scholar
  76. Wood R et al (2011) The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmos Chem Phys 11:627–654. doi: 10.5194/acp-11-627-2011 CrossRefGoogle Scholar
  77. Wylie DP, Menzel WP, Woolf HM, Strabala KI (1994) Four years of global cirrus cloud statistics using HIRS. J Clim 7:1972–1986CrossRefGoogle Scholar
  78. Yuan T, Remer LA, Yu H (2011) Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos Chem Phys 11:7119–7132. doi: 10.5194/acp-11-7119-2011 CrossRefGoogle Scholar
  79. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperture evolution over the last millennium. Geophys Res Lett 37(L14702). doi: 10.1029/2010GL043717
  80. Zerefos CS, Gerogiannis VT, Balis D, Zerefos SC, Kazantzidis A (2007) Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings. Atmos Chem Phys 7:4027–4042CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alan Robock
    • 1
    Email author
  • Douglas G. MacMartin
    • 2
  • Riley Duren
    • 3
  • Matthew W. Christensen
    • 4
  1. 1.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA
  2. 2.Control and Dynamical SystemsCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations