Climatic Change

, Volume 118, Issue 3–4, pp 625–640 | Cite as

Climate change and infectious diseases: Can we meet the needs for better prediction?

  • Xavier RodóEmail author
  • Mercedes Pascual
  • Francisco J. Doblas-Reyes
  • Alexander Gershunov
  • Dáithí A. Stone
  • Filippo Giorgi
  • Peter J. Hudson
  • James Kinter
  • Miquel-Àngel Rodríguez-Arias
  • Nils Ch. Stenseth
  • David Alonso
  • Javier García-Serrano
  • Andrew P. Dobson


The next generation of climate-driven, disease prediction models will most likely require a mechanistically based, dynamical framework that parameterizes key processes at a variety of locations. Over the next two decades, consensus climate predictions make it possible to produce forecasts for a number of important infectious diseases that are largely independent of the uncertainty of longer-term emissions scenarios. In particular, the role of climate in the modulation of seasonal disease transmission needs to be unravelled from the complex dynamics resulting from the interaction of transmission with herd immunity and intervention measures that depend upon previous burdens of infection. Progress is also needed to solve the mismatch between climate projections and disease projections at the scale of public health interventions. In the time horizon of seasons to years, early warning systems should benefit from current developments on multi-model ensemble climate prediction systems, particularly in areas where high skill levels of climate models coincide with regions where large epidemics take place. A better understanding of the role of climate extremes on infectious diseases is urgently needed.


Malaria Heat Wave West Nile Virus Cholera Leptospirosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to thank the La Caixa Foundation and in particular, Paquita Ciller, for the support received to host and fund the meeting on climate, populations and infectious diseases held at the COSMOCAIXA museum in Barcelona, in November, 2006. We also thank Kyrre l. Kausrud, Sunetra Gupta, Kevin Lafferty, Menno Bouma, D. Volpi and three Anonymous Referees for many useful discussions and comments on earlier versions of the manuscript. FJDR received financial support from the ENSEMBLES project (GOCE-CT-2003-505539). Support for this work was also provided by CIRCE-EUFP6 to X.R., by NIH/NSF EID Grant 0430120 and a NOAA award to X.R., M.P., J.K. and A.J.D. J.G-S and X. Rodó wants to acknowledge support from the EU project QWeCI (Quantifying Weather and Climate Impacts on health in developing countries; funded by the European Commission’s Seventh Framework Research Programme under the grant agreement 243964). and the DENFREE: DENgue research Framework for Resisting Epidemics in Europe of the EUFP7 programme project. M. Pascual is an investigator of the Howard Hughes Medical Institute.

Supplementary material

10584_2013_744_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2440 kb)


  1. Alonso D, Bouma M, Pascual M (2011) Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proceedings of the Royal Society B. doi: 10.1098/repb.2010.2020 Google Scholar
  2. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and population dynamics: Infectious diseases as case studies. Ecology Letters 9:467–484CrossRefGoogle Scholar
  3. Baeza A, Bouma MJ, Dobson AP, Dhiman R, Srivastava HC, Pascual M (2011) Climate forcing and desert malaria: the effect of irrigation. Mal J 10:190CrossRefGoogle Scholar
  4. Ballester F, Michelozzi P, Iniguez C (2003) Weather, climate, and public health. Journal of Epidemiology and Community Health 57:759–760CrossRefGoogle Scholar
  5. Ballester J, Robine J-M, Hermann F, Rodó X (2011) Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. Nat Comms 2:358. doi: 10.1038/ncomms1360 CrossRefGoogle Scholar
  6. Bell JA, Mickelson NJ, Vaughan JA (2005) West Nile virus in hostseeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota. Vector Borne Zoonotic Dis 5:373–382. doi: 10.1089/vbz.2005.5.373 CrossRefGoogle Scholar
  7. Bell JA, Brewer CM, Mickelson NJ, Garman GW, Vaughan JA (2006) West Nile virus epizootiology, central Red River Valley, North Dakota and Minnesota, 2002–2005. Emerg. Infect. Dis. Available from
  8. Bjornstad ON, Grenfell BT (2001) Noisy clockwork: Time series analysis of population fluctuations in animals. Science 293(5530):638–643CrossRefGoogle Scholar
  9. Boëlle PY, Thomas G, Vergu E, Renault P, Valleron AJ, Flahault A (2008) Investigating transmission in a two-wave epidemic of Chikungunya fever, Reunion Island. Vector Borne Zoonotic Dis 8:207–218CrossRefGoogle Scholar
  10. Cash BA, Rodó X, Kinter JL III (2009a) Links between tropical Pacific SST and the regional climate of Bangladesh: Role of the western tropical and central extratropical Pacific. J Clim 22:1641–1660CrossRefGoogle Scholar
  11. Cash BA, Rodo X, Kinter JL III (2009b) Links between tropical pacific SST and Cholera Incidence in Bangladesh: Role of the western tropical and central extratropical pacific. J Clim 22(7):1641–1660CrossRefGoogle Scholar
  12. Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary Influence of El Niño on the Synchronous Dengue Epidemics in Thailand. PLoS Med 2(4):313–318CrossRefGoogle Scholar
  13. Charron DF, Thomas MK, Waltner-Toews D, Aramini JJ, Edge T, Kent RA, Maarouf AR, Wilson J (2004) Vulnerability of waterborne diseases to climate change in Canada: A review. Journal of Toxicology and Environmental Health—Part A: Current Issues 67(20–22):1667–1677CrossRefGoogle Scholar
  14. Chew FT, Doraisingham S, Ling AE, Kumarasinghe G, Lee BW (1998) Seasonal trends of viral respiratory tract infections in the Tropics. Epidemiol Infect 121:121–128CrossRefGoogle Scholar
  15. Childs DZ, Boots M (2010) Seasonal forcing, immunity and the dynamics of malaria. Royal Society Interface 7:309–319CrossRefGoogle Scholar
  16. Curriero FC, Patz JA, Rose JB, Lele S (2001) The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. American Journal of Public Health 91(8):1194–1199CrossRefGoogle Scholar
  17. D’Souza RM, Beeker NG, Hall G, Moodie KBA (2004) Does ambient temperature affect foodborne disease? Epidemiology 15(1):86–92CrossRefGoogle Scholar
  18. de Magny GC, Guégan J-F, Petit M, Cazelles B (2007) Regional-scale climate variability synchrony of cholera epidemics in West Africa BMC Infectious Diseases 7:20Google Scholar
  19. Dietz K, Molineax L, Thomas A (1974) Malaria model tested in African savannah (1974). Bulletin of the World Health OrganizationGoogle Scholar
  20. Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D (2010) Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech Memo 621:45, Reading UKGoogle Scholar
  21. Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the ECMWF coupled forecast system: Impact of ocean observations. Journal Geophysical Research A 116:D19111. doi: 10.1029/2010JD015394 CrossRefGoogle Scholar
  22. Dobson AP, Kutz S, Pascual M, Winfree R (2003) Pathogens and parasites in a changing world. In: Lovejoy T (ed) Climate change and biodiversity: Synergistic impacts. Yale University Press, New HavenGoogle Scholar
  23. Earn DJ, Rohani P, Bolker BM, Grenfell BT (2000) A simple model for complex dynamical transitions in epidemics. Science 287(5453):667–670CrossRefGoogle Scholar
  24. Easterling DR, Evans JL, Groisman P, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climatic events: a brief review. Bulletin of the American Meteorological Society 81:417–425CrossRefGoogle Scholar
  25. Enserink M (2007) Tropical disease follows mosquitoes to Europe. Science 317:1485CrossRefGoogle Scholar
  26. Estrada-Peña A, Venzal JM (2007) Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 44:1130–1138CrossRefGoogle Scholar
  27. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  28. Gershunov A, Douville H (2013) Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In: H. Diaz and R. Murnane (Eds), Climate Extremes and Society. Cambridge University PressGoogle Scholar
  29. Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, Hay SI (2011) Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax Parasites & Vectors 4:92 doi: 10.1186/1756-3305-4-92
  30. Gilles (1999) Epidemiology. Oxford University Press, OxfordGoogle Scholar
  31. Gillett JD (1974) Direct and indirect influences of temperature on the transmission of parasites from insects to man. The Effects of Meteorological Factors upon Parasites. A. E. R. Taylor and R. Muller. Blackwell Scientific, Oxford, Symposia of the British Parasitological Society 12:79–95Google Scholar
  32. Greenwood BM, Blakebrough IS, Bradley AK, Wali S, Whittle HC et al (1984) Meningococcal disease and season in sub-Saharan Africa. Lancet 1:1339–1342CrossRefGoogle Scholar
  33. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate Warming and Disease Risks for Terrestrial and Marine Biota Science 296:2158–2162Google Scholar
  34. Hosseini PR (2006) Pattern formation and individual-based models: the importance of understanding individual-based movement. Ecol Mod 194:357–371CrossRefGoogle Scholar
  35. Hudson PJ, Dobson AP (1995) Macroparasites: Observed patterns in naturally fluctuating animal populations. In: Grenfell BT, Dobson AP (eds) Infectious diseases in natural populations. Cambridge University Press, Cambridge, pp 144–176CrossRefGoogle Scholar
  36. IPCC (2007) The physical science basis. In: Solomon S et al (eds) Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  37. Jetten TH, Focks DA (1997) Potential changes in the distribution of dengue transmission under climate warming. American Journal of Tropical Medicine and Hygiene 57:285–297Google Scholar
  38. Kausrud KL, Viljugrein H, Frigessi A, Begon M, Davis S, Leirs H, Dubyanskiy V, Stenseth NC (2007) Climatically-driven synchrony of gerbil populations allows large-scale plague outbreaks. Proceedings of the Royal Society of London, B 274:1963–1969CrossRefGoogle Scholar
  39. Koelle K, Pascual M (2004) Disentangling extrinsic from intrinsic factors in disease dynamics: A nonlinear time series approach with an application to cholera. The American Naturalist 163(6):901–913CrossRefGoogle Scholar
  40. Koelle K, Rodó X, Pascual M, Yunus MD, Mostafa G (2005) Refractory periods and environmental forcing in cholera dynamics. Nature 436:696–700CrossRefGoogle Scholar
  41. Kutz SJ, Hoberg EP, Polley L, Jenkins EJ (2005) Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society of London B, Published Online, doi: 10.1098
  42. Lafferty KD (2009) The ecology of climate change and infectious diseases: Ecology, v. 90, no. 4, p. 888–900, doi: 10.1890/08-0079.1
  43. Laneri K, Bhadra A, Ionides EL, Bouma M, Dhiman RC et al (2010) Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India. PLoS Comput Biol 6(9):e1000898. doi: 10.1371/journal.pcbi.1000898 CrossRefGoogle Scholar
  44. Lloyd-Smith JO, George D et al (2009) Epidemic dynamics at the human-animal interface. Science 326(5958):1362–1367CrossRefGoogle Scholar
  45. Lobell DB, Cahill KN, Field CB (2007) Historical effects of temperature and precipitation on California crop yields. Climatic Change 81:187–203CrossRefGoogle Scholar
  46. Martens WJM, Jetten TH, Focks DA (1997) Sensitivity of malaria, schistosomiasis and dengue to global warming. Climate Change 35:145–156CrossRefGoogle Scholar
  47. May RM (2007) Parasites, people and policy: Infectious diseases and the millennium development goals. Trends in Ecology and Evolution 22(10):497–503CrossRefGoogle Scholar
  48. May RM, Dobson AP (1986) Population dynamics and the rate of evolution of pesticide resistance. pp. 170–193 in Pesticide Resistance Management. NAS-NRC Publications (from an International Symposium, Washington, D.C., 27–29 November 1984).Google Scholar
  49. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty-first century. Science 305:994–997CrossRefGoogle Scholar
  50. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell M (2009) Towards “seamless” prediction: Calibration of climate-change projections using seasonal forecasts. Bulletin of the American Meteorological Society 89:459–470CrossRefGoogle Scholar
  51. Pascual M, MJ Bouma (2009) Do rising temperatures matter? Ecology 90(4):906–912Google Scholar
  52. Pascual M, Rodo X, Ellner SP, Colwell R, Bouma MJ (2000) Cholera dynamics and the El Niño Southern Oscillation. Science 289(5485):1766CrossRefGoogle Scholar
  53. Pascual M, Chaves LF, Cash B, Rodó X, Yunus MD (2008) Predicting endemic cholera: The role of climate variability and disease dynamics. Clim Res 36:131–140CrossRefGoogle Scholar
  54. Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: Ecological niche models, predicted geographic distributions, and climate change effects. International Journal for Parasitology 33:919–931CrossRefGoogle Scholar
  55. Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc Lond B Biol Sci 267:1741–1744CrossRefGoogle Scholar
  56. Reiner R, King A, Emch M, Yunus M, Faruque A, Pascual M (2012) Highly localized sensitivity to climate forcing drives endemic cholera in a megacity. PNAS Early Edition. doi: 10.1073/pnas.1108438109 Google Scholar
  57. Rinaldo A, Bertuzzo E, Mari L, Righetto L et al (2012) Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. PNAS. doi: 10.1073 Google Scholar
  58. Rodó X, Pascual M, Fuchs G, Faruque ASG (2002) ENSO and cholera: A nonstationary link related to climate change? PNAS 99:12901–12906CrossRefGoogle Scholar
  59. Rogers DJ, Randolph SE (2000) The Global Spread of Malaria in a Future. Warmer World Science 289:1763–1766Google Scholar
  60. Rogers D, Randolph SE, Snow RW, Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415:710–715CrossRefGoogle Scholar
  61. Rose JB, Huffman DE, Gennaccaro A (2002) Risk and control of waterborne cryptosporidiosis. FEMS Microbiology Reviews 26(2):113–123CrossRefGoogle Scholar
  62. Snow RW, Craig MH, Deichmann U, le Sueur D (1999) A Preliminary Continental Risk Map for Malaria Mortality among African Children. Parasitology Today 15(3):99–104CrossRefGoogle Scholar
  63. Stenseth NC, Samia NI, Viljugrein H, Kausrud K, Begon M, Davis S, Leirs H, Dubyanskiy VM, Esper J, Ageyev VS, Klassovskiy NL, Pole SB, Chan KS (2006) Plague Dynamics are driven by climate variation. Proceedings of National Academy of Sciences 103:13110–13115CrossRefGoogle Scholar
  64. Stige LC, Chan K-S, Zhang Z, Frank D, Stenseth NC (2007) Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proceedings of the National Academy of Sciences 104:16188–16193CrossRefGoogle Scholar
  65. Stott P (2004) A, Stone, D.A. & Allen, M.R. Human contribution to the European heat wave of 2003. Nature 432:610–613CrossRefGoogle Scholar
  66. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416:723–726CrossRefGoogle Scholar
  67. Tanser FC, Sharp B, le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362:1792–1798CrossRefGoogle Scholar
  68. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211CrossRefGoogle Scholar
  69. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse A, Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579CrossRefGoogle Scholar
  70. World Health Organization (WHO). Global Health Atlas, (2004).
  71. World Health Organization (WHO). Global Health Atlas, (2006).
  72. Zell R (2004) Global climate change and the emergence/re-emergence of infectious diseases. International Journal of Medical Microbiology 293:16–26Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xavier Rodó
    • 1
    • 2
    Email author
  • Mercedes Pascual
    • 3
    • 13
  • Francisco J. Doblas-Reyes
    • 1
    • 2
  • Alexander Gershunov
    • 4
  • Dáithí A. Stone
    • 5
  • Filippo Giorgi
    • 6
  • Peter J. Hudson
    • 7
  • James Kinter
    • 8
  • Miquel-Àngel Rodríguez-Arias
    • 2
  • Nils Ch. Stenseth
    • 9
  • David Alonso
    • 10
  • Javier García-Serrano
    • 2
  • Andrew P. Dobson
    • 11
    • 12
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  2. 2.Institut Català de Ciències del Clima (IC3)BarcelonaSpain
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA
  4. 4.Climate, Atmospheric Science and Physical OceanographyScripps Institution of OceanographyLa JollaUSA
  5. 5.Scientific Computing Group, Berkeley Lab Computing SciencesLawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Earth System Physics Section, The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  7. 7.Center for Infectious Disease DynamicsPenn State UniversityPennsylvaniaUSA
  8. 8.Center for Ocean-Land-Atmosphere StudiesInstitute of Global Environment and SocietyCalvertonUSA
  9. 9.Centre for Ecological and Evolutionary Synthesis (CEES), Department of BioscienceUniversity of OsloBlindern,Norway
  10. 10.Center for Advanced Studies-Blanes, CSICBlanesSpain
  11. 11.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  12. 12.Santa Fe InstituteSanta FeUSA
  13. 13.Howard Hughes Medical InstituteChevy ChaseUSA

Personalised recommendations