Climatic Change

, Volume 119, Issue 2, pp 479–494 | Cite as

Climate policies can help resolve energy security and air pollution challenges

  • David L. McCollum
  • Volker Krey
  • Keywan Riahi
  • Peter Kolp
  • Arnulf Grubler
  • Marek Makowski
  • Nebojsa Nakicenovic


This paper assesses three key energy sustainability objectives: energy security improvement, climate change mitigation, and the reduction of air pollution and its human health impacts. We explain how the common practice of narrowly focusing on singular issues ignores potentially enormous synergies, highlighting the need for a paradigm shift toward more holistic policy approaches. Our analysis of a large ensemble of alternate energy-climate futures, developed using MESSAGE, an integrated assessment model, shows that stringent climate change policy offers a strategic entry point along the path to energy sustainability in several dimensions. Concerted decarbonization efforts can lead to improved air quality, thereby reducing energy-related health impacts worldwide: upwards of 2–32 million fewer disability-adjusted life years in 2030, depending on the aggressiveness of the air pollution policies foreseen in the baseline. At the same time, low-carbon technologies and energy-efficiency improvements can help to further the energy security goals of individual countries and regions by promoting a more dependable, resilient, and diversified energy portfolio. The cost savings of these climate policy synergies are potentially enormous: $100–600 billion annually by 2030 in reduced pollution control and energy security expenditures (0.1–0.7 % of GDP). Novel aspects of this paper include an explicit quantification of the health-related co-benefits of present and future air pollution control policies; an analysis of how future constraints on regional trade could influence energy security; a detailed assessment of energy expenditures showing where financing needs to flow in order to achieve the multiple energy sustainability objectives; and a quantification of the relationships between different fulfillment levels for energy security and air pollution goals and the probability of reaching the 2 °C climate target.


Climate Policy Selective Catalytic Reduction Decarbonization Baseline Scenario Energy Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper describes work partially undertaken within the framework of the Global Energy Assessment. Financial support was provided by the Global Environment Facility, United Nations Industrial Development Organization, Research Institute of Innovative Technology for the Earth, and US National Academy of Sciences.

Supplementary material

10584_2013_710_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3.16 MB)


  1. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Hoeglund-Isaksson L, Klimont Z, Purohit P, Rafaj P, Schoepp W, Toth G, Wagner F, Winiwarter W (2009) Potentials and Costs for Greenhouse Gas Mitigation in Annex I Countries: Methodology, IIASA Interim Report IR-09-043. International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaGoogle Scholar
  2. Bollen J, Hers S, van der Zwaan B (2010) An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy 38:4021–4030CrossRefGoogle Scholar
  3. Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M (2009) International climate policy architectures: overview of the EMF 22 international scenarios. Energy Econ 31:S64–S81CrossRefGoogle Scholar
  4. Cofala J, Amann M, Asman W, Bertok I, Heyes C, Isaksson LH, Klimont Z, Schoepp W, Wagner F (2010) Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Arch Environ Protect 36:29–39Google Scholar
  5. Cooper CD, Alley FC (2010) Air Pollution Control: A Design Approach, 4th edn. Waveland Pr Inc, p 839.
  6. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Strahan S, Schultz M, Solmon F, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulphur deposition on regional and global scales: a multi-model evaluation. Global Biogeochem Cycles GB4003:21Google Scholar
  7. Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295:113–117CrossRefGoogle Scholar
  8. Goldemberg J, Johansson TB (2004) World Energy Assessment: Overview 2004 Update. United Nations Development Programme, New YorkGoogle Scholar
  9. IPCC (2007) Climate Change 2007—Fourth Assessment Report. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  10. Jansen JC, Arkel WGv, Boots MG (2004) Designing indicators of long-term energy supply security. Energy Research Centre of the Netherlands (ECN), p. 35.
  11. Krol M, Houweling S, Bregman B, Van Den Broek M, Segers A, Van Velthoven P, Peters W, Dentener F, Bergamaschi P (2005) The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys 5:417–432CrossRefGoogle Scholar
  12. Kruyt B, van Vuuren DP, de Vries HJM, Groenenberg H (2009) Indicators for energy security. Energy Policy 37:2166–2181CrossRefGoogle Scholar
  13. Landau E (2011) Why (or why not) nuclear energy? CNN, Online edn, Japan. Accessed 26 Mar 2011
  14. McCollum D, Krey V, Riahi K (2011) An integrated approach to energy sustainability. Nat Clim Chang 1:428–429CrossRefGoogle Scholar
  15. Nakicenovic N, Kolp P, Riahi K, Kainuma M, Hanaoka T (2006) Assessment of emissions scenarios revisited. Environ Econ Policy Stud 7:137–173Google Scholar
  16. Nemet GF, Holloway T, Meier P (2010) Implications of incorporating air quality co-benefits into climate change policymaking. Environ Res Lett 5:1–9CrossRefGoogle Scholar
  17. Rafaj P, Rao S, Klimont Z, Kolp P, Schoepp W (2010) Emissions of air pollutants implied by global long-term energy scenarios, Interim Report IR-10-019. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, p 32Google Scholar
  18. Ramanathan V, Xu Y (2010) The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci 107:8055–8062CrossRefGoogle Scholar
  19. Rao S, Chirkov V, Dentener F, Dingenen Rv, Pachauri S, Purohit P, Amann M, Heyes C, Kinney P, Kolp P, Klimont Z, Riahi K, Schoepp W (2012) Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution. Environ Model Assess. doi: 10.1007/s10666-012-9317-3;
  20. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935CrossRefGoogle Scholar
  21. Riahi K, Dentener F, Gielen D, Grubler A, Jewell J, Klimont Z, Krey V, McCollum D, Pachauri S, Rao S, van Ruijven B, van Vuuren DP, Wilson C (2012) Energy Pathways for Sustainable Development, in Global Energy Assessment: Toward a Sustainable Future. IIASA, Laxenburg, and Cambridge University Press, Cambridge, United Kingdom and USA.Google Scholar
  22. Rogelj J, Hare W, Lowe J, van Vuuren DP, Riahi K, Matthews B, Hanaoka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2 deg C global temperature limit. Nat Clim Chang 1:413–418CrossRefGoogle Scholar
  23. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  24. Solomon S, Qin D, Manning M, Allen RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change in Solomon S, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (ed.), Cambridge, United Kingdom and New York, NY, USA. and
  25. Sovacool BK, Brown MA (2010) Competing dimensions of energy security: an international perspective. Annu Rev Environ Resour 35:77–108CrossRefGoogle Scholar
  26. The White House (2011) Blueprint for a Secure Energy Future. Washington, D.C.
  27. UNEP (2011) Near-term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers. United Nations Environment Programme, NairobiGoogle Scholar
  28. van Vuuren DP, Cofala J, Eerens HE, Oostenrijk R, Heyes C, Klimont Z, den Elzen MGJ, Amann M (2006) Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy 34:444–460CrossRefGoogle Scholar
  29. WHO (2006) Air quality guidelines. Global update 2005. World Health Organization, Copenhagen, p 484Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David L. McCollum
    • 1
    • 2
  • Volker Krey
    • 1
  • Keywan Riahi
    • 1
    • 5
  • Peter Kolp
    • 1
  • Arnulf Grubler
    • 1
    • 3
  • Marek Makowski
    • 1
    • 6
  • Nebojsa Nakicenovic
    • 1
    • 4
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Institute of Transportation StudiesUniversity of California, DavisDavisUSA
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  4. 4.Institute of Energy Systems and Electric DrivesVienna University of TechnologyViennaAustria
  5. 5.Institute of Thermal EngineeringGraz University of TechnologyGrazAustria
  6. 6.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations