Climatic Change

, Volume 118, Issue 3–4, pp 901–918 | Cite as

The role of temperature on treeline migration for an eastern African mountain during the Last Glacial Maximum

  • F. SaltréEmail author
  • I. Bentaleb
  • C. Favier
  • D. Jolly


Paleo-data suggest that East African mountain treelines underwent an altitudinal shift during the Last Glacial Maximum (LGM). Understanding the ecological and physiological processes underlying treeline response to such past climate change will help to improve forecasts of treeline change under future global warming. In spite of significant improvements in paleoclimatic reconstruction, the climatic conditions explaining this migration are still debated and important factors such as atmospheric CO2 concentration, the impact of lapse rate decreasing temperature along altitudinal gradients and rainfall modifications due to elevation have often been neglected or simplified. Here, we assess the effects of these different factors and estimate the influence of the most dominant factors controlling changes in past treeline position using a multi-proxy approach based on simulations from BIOME4, a coupled biogeography and biogeochemistry model, modified to account for the effect of elevation on vegetation, compared with pollen, and isotopic data. The results indicate a shift in mountain vegetation at the LGM was controlled by low pCO2 and low temperatures promoting species morphologically and physiologically better adapted to LGM conditions than many trees composing the forest belt limit. Our estimate that the LGM climate was cooler than today’s by −4.5 °C (range: −4.3 to −4.6 °C) at the upper limit of the treeline, whereas at 831 m it was cooler by −1.4 °C (range: −2.6 to −0.6 °C), suggests that a possible lapse rate modification strongly constrained the upper limit of treeline, which may limit its potential extension under future global warming.


Last Glacial Maximum Pollen Data Altitudinal Gradient Mean Annual Precipitation Mean Annual Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are most grateful to L. Bremond, S. Fauquette, E.S. Gritti, and C. Thinès, for helpful and valuable comments on this manuscript. We also acknowledge the many contributors to the African Pollen database. We thank S. L. Shafer for proofreading the final version of the manuscript, and the three anonymous referees for their constructive comments on the manuscript. The Centre National de la Recherche Scientifique of France and the Ecole Pratique des Hautes Etudes provided support to F Saltré. This is ISEM contribution No. ISEM 2012-181.


  1. Ali AA, Carcaillet C, Guendon JL, Quinif Y, Roiron P, Terral JF (2003) The Early Holocene treeline in the southern French Alps: new evidence from travertine formations. Glob Ecol Biogeogr 12:411–419CrossRefGoogle Scholar
  2. Benedict RP (1984) Fundamentals of temperature, pressure and flow measurement. Wiley, New York, 560 ppCrossRefGoogle Scholar
  3. Bonnefille R (1987) Evolution forestière et climatique au Burundi Durant les quarante derniers milliers d’années. CR Acad Sci 305:1021–1026Google Scholar
  4. Bonnefille R, Chalié F (2000) Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Glob Planet Chang 26:25–50CrossRefGoogle Scholar
  5. Bonnefille R, Riollet G (1988) The Kashiru pollen sequence (Burundi) palaeoclimatic implications for the last 40,000 yrs B.P. in tropical Africa. Quat Res 30:19–35CrossRefGoogle Scholar
  6. Bonnefille R, Roeland JC, Guiot J (1990) Temperature and rainfall estimates for the past 40,000 years in Equatorial Africa. Nature 346:347–349CrossRefGoogle Scholar
  7. Bonnefille R, Riollet G, Buchet G (1991) Nouvelle séquence pollinique d’une tourbière de la crte Zaire-Nil (Burundi). Rev Palaeobot Palynol 67:315–330Google Scholar
  8. Bonnefille R, Chalié F, Guiot J, Vincens A (1992) Quantitative estimates of full glacial temperatures in Equatorial Africa from palynological data. Clim Dynam 6:251–257CrossRefGoogle Scholar
  9. Borchert R (1998) Responses of tropical trees to rainfall seasonality and its long-term changes. Clim Chang 39:381–393CrossRefGoogle Scholar
  10. Carcaillet C, Brun JJ (2000) Changes in landscape structure in the northwestern Alps over the last 7,000 years: lesson from soil and charcoal. J Veg Sci 11:705–714CrossRefGoogle Scholar
  11. Coetzee JA (1967) Pollen analytical studies in east and southern Africa. Palaeoecol Africa 3:1–146Google Scholar
  12. COHMAP M (1988) Climatic changes of the last 18,000 years: observations and model simulation. Science 241:1043–1051CrossRefGoogle Scholar
  13. Cox CB, Moore PD (2010) Biogeography: an ecological and evolutionary approach, 8th edn. Wiley, LondonGoogle Scholar
  14. Crawford RMM (2008) Plant at the margin: ecological limits and climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001) Disturbance and climate warming influence on New Zealand Notofagus tree-line position dynamics. J Ecol 89:1061–1071CrossRefGoogle Scholar
  16. David F (1995) Vegetation dynamics in the northern French Alps. Hist Biol 9:269–295CrossRefGoogle Scholar
  17. Doherty RM, Sitch S, Smith B, Lewis SL, Thornton PPK (2010) Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa. Glob Chang Biol 16:617–640CrossRefGoogle Scholar
  18. Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, Andrieu V, Bottema S, Buchet G, de Beaulieu JL, Hamilton AC, Maley J, Marchant R, Perez-Obiol R, Reille M, Riollet G, Scott L, Straka H, Taylor D, Van Campo E, Vincens A, Laarif F, Jonson H (2000) Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J Biogeogr 27:621–634CrossRefGoogle Scholar
  19. FAO (1995) A CD-ROM with world-wide agroclimatic data. User’s manual and CD-ROM. Agrometeorology Series working paper no. 11. FAO, Rome, 68 ppGoogle Scholar
  20. Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen S-E, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. 1. Vegetation, lake-levels and geochemistry. Clim Dyn 15:853–856CrossRefGoogle Scholar
  21. Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211CrossRefGoogle Scholar
  22. Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol 162:157–168CrossRefGoogle Scholar
  23. Gerten D, Lucht W, Schaphoff S, Cramer W, Hickler T, Wagner W (2005) Hydrologic resilience of the terrestrial biosphere. Geophys Res Lett 32:L21408CrossRefGoogle Scholar
  24. Gritti ES, Cassignat C, Flores O, Bonnefille R, Chalié F, Guiot J, Jolly D (2010) Simulated effects of a seasonal precipitation change on the vegetation in tropical Africa. Clim Past 6:169–178CrossRefGoogle Scholar
  25. Guiot J (1990) Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 80:49–69CrossRefGoogle Scholar
  26. Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32:135–154CrossRefGoogle Scholar
  27. Hamilton AC (1982) Environmental history of East Africa. Academic, LondonGoogle Scholar
  28. Hatté C, Guiot J (2005) Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Clim Dyn 25:315–327CrossRefGoogle Scholar
  29. Hatté C, Rousseau DD, Guiot J (2009) Climate reconstruction from pollen and delta C-13 records using inverse vegetation modeling: implication for past and future climates. Clim Past 5:147–156CrossRefGoogle Scholar
  30. Hessler I, Dupont L, Bonnefille R, Behling H, González C, Helmens KF, Hooghiemstra H, Lebamba J, Ledru M-P, Lézine A-M, Maley J, Marret F, Vincens A (2010) Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial. Quat Sci Rev 29:2882–2899CrossRefGoogle Scholar
  31. Hickler T, Smith B, Prentice IC, Mjöfors K, Miller P, Arneth A, Sykes MT (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 14:1–12CrossRefGoogle Scholar
  32. Holtmeier FK, Broll G (2007) Treeline advance: driving processes and adverse factors. Landsc Online 1:1–33CrossRefGoogle Scholar
  33. IPCC (2007) Climate change 2007: the physical science basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ParisGoogle Scholar
  34. Jolly D, Bonnefille R (1991) Diagramme pollinique d’un sondage Holocène de la Kuruyange (Burundi, Afrique Centrale). Palaeoecol Africa 22:265–274Google Scholar
  35. Jolly D, Haxeltine A (1997) Effect of low glacial atmospheric CO2 on tropical African Montane Vegetation. Science 276:786–788CrossRefGoogle Scholar
  36. Jolly D, Bonnefille R, Roux M (1994) Numerical interpretation of a high resolution Holocene pollen record from Burundi. Palaeogeogr Palaeoclimatol Palaeoecol 109:357–370Google Scholar
  37. Jolly D, Harrison SP, Damnati B, Bonnefille R (1998a) Simulated climate and biomes of Africa during the Late Quaternary: comparison with pollen and lake status data. Quat Sci Rev 17:629–657CrossRefGoogle Scholar
  38. Jolly D, Prentice IC, Bonnefille R, Ballouche A, Bengo M, Brenac P, Buchet G, Burney D, Cazet J-P, Cheddadi R, Edorh T, Elenga H, Elmoutaki S, Guiot J, Laarrif F, Lamb H, Lezine A-M, Maley J, Mbenza M, Peyron O, Reille M, Reynaud-Farrera I, Riollet G, Ritchie JC, Roche E, Scott L, Ssemmanda I, Straka H, Umer M, Van Campo E, Vilimumbalo S, Vincens A, Waller M (1998b) Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6,000 years. J Biogeogr 25:1007–1027CrossRefGoogle Scholar
  39. Kaplan JO (2001) Geophysical applications of vegetation modelling. Lund University, Lund, Sweden, 128 ppGoogle Scholar
  40. Keeling CD, Whorf TP (1997) Trends online: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  41. Kenworthy JM (1966) Temperature conditions in the tropical highlands climates of East Africa. East African Geogr Rev 4:1–11Google Scholar
  42. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574CrossRefGoogle Scholar
  43. Körner C, Neumayer M, Palaez Menendez-Riedl S, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383Google Scholar
  44. Krieger TJ, Durston C, Albright DC (1977) Statistical determination of effective variables in sensitivity analysis. Trans Am Nucl Soc 28:515–516Google Scholar
  45. Kullman L, Kjällgren L (2000) A coherent postglacial tree-limit chronology (Pinus sylvestris L.) for the Swedish Scandes: aspects of the paleoclimate and “recent warming,” based on megafossil evidence. Arct Antart Alp Res 32:419–428CrossRefGoogle Scholar
  46. Livingstone DA (1971) A 22,000 year pollen record from the plateau of Zambia. Limnol Oceanogr 16:349–356Google Scholar
  47. Livingstone DA (1975) Late Quaternary climatic change in Africa. Annu Rev Ecol Systemat 6:249–280CrossRefGoogle Scholar
  48. Lloyd J, Farquhar GD (1994) 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99:201–215CrossRefGoogle Scholar
  49. Maitima JM (1991) Vegetation response to climatic change in Central Rift Valley, Kenya. Quat Res 35:234–245Google Scholar
  50. McHugh M (2005) Multi-model trends in East African rainfall associated with increased CO2. Geophys Res Lett 32:L01707CrossRefGoogle Scholar
  51. Morrison MES (1968) Vegetation and climate change in the uplands of south-western Uganda during the later Holocene period, 1: Muchoya Swamp, Kigezi District. J Ecol 56:363–384Google Scholar
  52. Mumbi CT, Marchant R, Hooghiemstra H, Wooller MJ (2008) Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. Quat Res 69:326–341CrossRefGoogle Scholar
  53. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056CrossRefGoogle Scholar
  54. Oliver JE (2008) Encyclopedia of world climatology. Springer, Heidelberg, GermanyGoogle Scholar
  55. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol System 37:637–669Google Scholar
  56. Prentice IC, Jolly D, BIOME 6000 Participants (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519CrossRefGoogle Scholar
  57. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  58. Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  59. Street-Perrott FA (1994) Palaeo-perspectives: changes in a terrestrial ecosystem. Ambio 23:37–43Google Scholar
  60. Street-Peyrott FA, Huang Y, Perrott RA, Eglinton G, Barker P, Ben Khelifa L, Harkness DD, Olago DO (1997) Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–1426CrossRefGoogle Scholar
  61. Street-Perrott FA, Barker PA, Swain DL, Ficken KJ, Wooller MJ, Olago DO, Huang Y (2007) Late Quaternary changes in ecosystems and carbon cycling on Mt. Kenya, East Africa: a landscape-ecological perspective based on multi-proxy lake-sediment influxes. Quat Sci Rev 26:1838–1860CrossRefGoogle Scholar
  62. Taylor DM (1990) Late Quaternary pollen records from two Ugandan mires: evidence for environmental change in the Rukiga highlands of southwest Uganda. Palaeogeogr Palaeoclimatol Palaeoecol 80:283–300Google Scholar
  63. Taylor D (1992) Pollen evidence from Muchoya swamp, Rukiga Highlands (Uganda), for abrupt changes in vegetation during the last ca. 21,000 years. Bull Soc Géol France 163:77–82Google Scholar
  64. Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Does low atmospheric pressure in the alpine environment suppress photosynthesis? Ecology 76:2663–2668CrossRefGoogle Scholar
  65. Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552CrossRefGoogle Scholar
  66. Tissue DT, Lewis JD (2012) Learning from the past: how low [CO2] studies inform plant and ecosystem response to future climate change. New Phytol 194:4–6CrossRefGoogle Scholar
  67. Vincens A (1989a) Paleoenvironnements du Bassin Nord-Tanganyika (Zaïre, Burundi, Tanzanie) au cours des 13 derniers mille ans: apport de la palynologie. Rev Palaeobot Palynol 61(1–2):69–88Google Scholar
  68. Vincens A (1989b) Les forêts claires Zambéziennes du bassin Sud-Tanganyika: evolution entre 25,000 et 6000 ans BP. CR Acad Sci Paris 308:809–814Google Scholar
  69. Vincens A (1991a) Late Quaternary vegetation history of South-Tanganyika Basin: climatic implications in South Central Africa. Palaeogeogr Palaeoclimatol Palaeoecol 86:207– 22Google Scholar
  70. Vincens (1991b) Vegetation et climat dans le bassin sud-Tanganyika entre 25000 et 9000 BP: nouvelles donnees palynologiques. Palaeoecol Africa 22:253–263Google Scholar
  71. Vincens A, Chalié F, Bonnefille R, Guiot J, Tiercelin J-J (1993) Pollen-derived rainfall and temperature estimates from Lake Tanganyika and their implication for late Pleistocene water level. Quat Res 40:343–350CrossRefGoogle Scholar
  72. Vincens A, Buchet G, Williamson D, Taieb M (2005) A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): new data on vegetation dynamics and climate in Central Eastern Africa. Rev Palaeobot Palynol 137:147–162CrossRefGoogle Scholar
  73. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395Google Scholar
  74. Wang T, Zhang Q, Ma K (2006) Treeline dynamics in relation to climate variability in the central Tianshan Mountains, northwestern China. Glob Ecol Biogeogr 15:406–415CrossRefGoogle Scholar
  75. Wang G, Han J, Faii A, Tan W, Shi W, Liu X (2008) Experimental measurements of leaf carbon isotope discrimination and gas exchange in the progenies of Plantago depressa and Setaria viridis collected from a wide altitudinal range. Physiol Plant 134:64–73CrossRefGoogle Scholar
  76. Wildi O, Schütz M (2000) Reconstruction of a long-term recovery process from pasture to forest. Comm Ecol 1:25–32CrossRefGoogle Scholar
  77. Wu H, Guiot J, Brewer S, Guo Z (2007a) Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim Dyn 29:211–229CrossRefGoogle Scholar
  78. Wu H, Guiot J, Brewer S, Guo ZT, Peng CH (2007b) Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proc Natl Acad Sci USA 104:9720–9724CrossRefGoogle Scholar
  79. Zech M (2006) Evidence for the Late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol 242:303–312CrossRefGoogle Scholar
  80. Zobler L (1986) A world soil file for global climate modelling. NASA technical memorandum no. 87802, Columbia University, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre de Bio-Archéologie et d’ÉcologieEPHE, Institut de BotaniqueMontpellierFrance
  2. 2.Université Montpellier 2, CNRS, IRDInstitut des Sciences et de l’EvolutionMontpellier Cedex 5France
  3. 3.104, College of Earth Ocean and Atmospheric Sciences, Administration BuildingOregon State UniversityCorvallisUSA

Personalised recommendations