Climatic Change

, Volume 118, Issue 2, pp 469–485 | Cite as

Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models

  • Jianting Zhu
  • William Forsee
  • Rina Schumer
  • Mahesh Gautam
Article

Abstract

Changes in climate are expected to lead to changes in the characteristics extreme rainfall frequency and intensity. In this study, we propose an integrated approach to explore potential changes in intensity-duration-frequency (IDF) relationships. The approach incorporates uncertainties due to both the short simulation periods of regional climate models (RCMs) and the differences in IDF curves derived from multiple RCMs in the North American Regional Climate Change Assessment Program (NARCCAP). The approach combines the likelihood of individual RCMs according to the goodness of fit between the extreme rainfall intensities from the RCMs’ historic runs and those from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data set and Bayesian model averaging (BMA) to assess uncertainty in IDF predictions. We also partition overall uncertainties into within-model uncertainty and among-model uncertainty. Results illustrate that among-model uncertainty is the dominant source of the overall uncertainty in simulating extreme rainfall for multiple locations in the U.S., pointing to the difficulty of predicting future climate, especially extreme rainfall regimes. For all locations a more intense extreme rainfall occurs in future climate; however the rate of increase varies among locations.

References

  1. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36CrossRefGoogle Scholar
  2. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(5):279–283. doi:10.1002/hyp.3360060305 CrossRefGoogle Scholar
  3. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29. doi:10.1016/S0022-1694(01)00421-8 CrossRefGoogle Scholar
  4. Bonnin GM, Martin D, Lin B, Parzybok T, Yekta M, Riley D (2004) NOAA Atlas 14: precipitation—frequency atlas of the United States. Vol. 1. National weather service. National Oceanic and Atmospheric Administration. Silver Spring, Maryland, p 261Google Scholar
  5. Brown C (2010) The end of reliability. J Water Res Pl-ASCE 136:143–145CrossRefGoogle Scholar
  6. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81(Supplementary 1):7–30CrossRefGoogle Scholar
  7. Draper D (1995) Assessment and propagation of model uncertainty. J Roy Stat Soc: Series B 57(1):45–97Google Scholar
  8. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap, monographs on statistics and applied probability. Chapman and Hall, New YorkGoogle Scholar
  9. Fowler HJ, Wilby RL (2010) Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Resour Res 46:W03525. doi:10.1029/2008WR007636 CrossRefGoogle Scholar
  10. Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR (2005) Constraining climate forecasting: the role of prior assumptions. Geophys Res Lett 32(9):L09702. doi:10.1029/2004GL022241 CrossRefGoogle Scholar
  11. Greene AM, Goddard L, Lall U (2006) Probabilistic multi-model regional temperature change projections. J Climate 19:4326–4343CrossRefGoogle Scholar
  12. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14(4):382–417CrossRefGoogle Scholar
  13. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme value distribution by the method of probability weighted moments. Technometrics 27(3):251–261CrossRefGoogle Scholar
  15. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez ES, Schär C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An intercomparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 81(Supplementary 1):31–52CrossRefGoogle Scholar
  16. Kao S-C, Ganguly AR (2011) Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J Geophy Res 116:D16119. doi:10.1029/2010JD015529 CrossRefGoogle Scholar
  17. Kendon EJ, Rowell DP, Jones RG, Buonomo E (2008) Robustness of future changes in local precipitation extremes. J Climate 21(17):4280–4297CrossRefGoogle Scholar
  18. Knutti R, Joos F, Muller SA, Plattner GK, Stocker TF (2005) Probabilistic climate change projections for CO2 stabilization profiles. Geophys Res Lett 32(20):L20707. doi:10.1029/2005GL023294 CrossRefGoogle Scholar
  19. Knutti R, Stocker TF, Joos F, Plattner GK (2003) Probabilistic climate change projections using neural networks. Clim Dynam 21:257–272CrossRefGoogle Scholar
  20. Leith NA, Chandler RE (2010) A framework for interpreting climate model outputs. J Roy Stat Soc: Series C 59(2):279–296. doi:10.1111/j.1467-9876.2009.00694.x CrossRefGoogle Scholar
  21. Mastrandrea MD, Schneider SH (2004) Integrated assessment of “dangerous” climate change. Science 304:571–575CrossRefGoogle Scholar
  22. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003, 34 pp., doi:10.1029/2009RG000314
  23. Mearns LO et al. (2007) updated 2011. The North American Regional Climate Change Assessment Program dataset, National Center for Atmospheric Research Earth System Grid data portal, Boulder, CO. Data downloaded May 2011. [http://www.earthsystemgrid.org/browse/viewProject.htm?projectId=ff3949c8-2008-45c8-8e27-5834f54be50f]
  24. Mesinger F, Dimego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteor Soc 87(3):343–360CrossRefGoogle Scholar
  25. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  26. Palmer TN, Raisanen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–514CrossRefGoogle Scholar
  27. Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res 44:W12418. doi:10.1029/2008WR006908 CrossRefGoogle Scholar
  28. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jianting Zhu
    • 1
  • William Forsee
    • 2
  • Rina Schumer
    • 3
  • Mahesh Gautam
    • 4
  1. 1.Department of Civil and Architectural EngineeringUniversity of WyomingLaramieUSA
  2. 2.Desert Research InstituteLas VegasUSA
  3. 3.Desert Research InstituteRenoUSA
  4. 4.California Department of Water ResourcesSacramentoUSA

Personalised recommendations