Climatic Change

, Volume 117, Issue 3, pp 561–573 | Cite as

Valuing climate impacts in integrated assessment models: the MIT IGSM

  • John Reilly
  • Sergey Paltsev
  • Ken Strzepek
  • Noelle E. Selin
  • Yongxia Cai
  • Kyung-Min Nam
  • Erwan Monier
  • Stephanie Dutkiewicz
  • Jeffery Scott
  • Mort Webster
  • Andrei Sokolov
Article

Abstract

We discuss a strategy for investigating the impacts of climate change on Earth’s physical, biological and human resources and links to their socio-economic consequences. As examples, we consider effects on agriculture and human health. Progress requires a careful understanding of the chain of physical changes—global and regional temperature, precipitation, ocean acidification, polar ice melting. We relate those changes to other physical and biological variables that help people understand risks to factors relevant to their daily lives—crop yield, food prices, premature death, flooding or drought events, land use change. Finally, we investigate how societies may adapt, or not, to these changes and how the combination of measures to adapt or to live with losses will affect the economy. Valuation and assessment of market impacts can play an important role, but we must recognize the limits of efforts to value impacts where deep uncertainty does not allow a description of the causal chain of effects that can be described, much less assigned a likelihood. A mixed approach of valuing impacts, evaluating physical and biological effects, and working to better describe uncertainties in the earth system can contribute to the social dialogue needed to achieve consensus on the level and type of mitigation and adaptation actions.

Supplementary material

10584_2012_635_MOESM1_ESM.docx (170 kb)
ESM 1(DOCX 169 kb)

References

  1. Antoine B, Gurgel A, Reilly JM (2008) Will recreation demand for land limit biofuels production? J Agr Food Ind Organ 6(2): Article 5. Available at: http://www.bepress.com/jafio/vol6/iss2/art5
  2. Boyd PW, Doney SC (2002) Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Let 29:53–57Google Scholar
  3. Carpenter SR, DeFries R, Dietz T, Mooney HA, Polasky S, Reid WV, Scholes RJ (2006) Millennium ecosystem assessment: research needs. Science 314:257–258CrossRefGoogle Scholar
  4. Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960CrossRefGoogle Scholar
  5. Cohen J and Prinn R (2009) Development of a fast and detailed model of urban-scale chemical and physical processing. MIT Joint Program Report 181, Cambridge, MA. (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt181.pdf)
  6. Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4:024007CrossRefGoogle Scholar
  7. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  8. Dutkiewicz S, Sokolov A, Scott J and Stone P (2005) A three-dimensional ocean-seaice-carbon cycle model and its coupling to a two-dimensional atmospheric model: uses in climate change studies. MIT Joint Program Report 122, Cambridge, MA. (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt122.pdf)
  9. Dutkiewicz S, Scott J and Follows MJ (2012) Response of phytoplankton habitats to a warmer world. MIT Joint Program Report, Cambridge, MA. (forthcoming)Google Scholar
  10. Fabricius KE, Langdon C, Uthicke S, Humprey C, Noonan A, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change. doi:10.1038/NCLIMATE1122
  11. Gurgel A, Reilly JM and Paltsev S (2007) Potential land use implications of a global biofuels industry. J Agr Food Ind Organ 5(2): Article 9Google Scholar
  12. Gurgel A, Cronin T, Reilly JM, Paltsev S, Kicklighter D, Melillo J (2011) Food, fuel, forests, and the pricing of ecosystem services. Am J Agric Econ 93(2):342–348Google Scholar
  13. Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14(4):146–150CrossRefGoogle Scholar
  14. Hughes G, Chinowsky P, Strzepek K (2010) The costs of adaptation to climate change for water infrastructure in OECD countries. Utilities Policy 18(3):142–153CrossRefGoogle Scholar
  15. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63CrossRefGoogle Scholar
  16. Matus K, Yang T, Paltsev S, Reilly J, Nam K-M (2008) Toward integrated assessment of environmental change: air pollution health effects in the USA. Clim Chang 88(1):59–92CrossRefGoogle Scholar
  17. Matus K, Nam K-M, Selin NE, Lamsal LN, Reilly JM, Paltsev S (2012) Health damages from air pollution in China. Glob Environ Chang 22(1):55–66CrossRefGoogle Scholar
  18. Melillo J, Reilly J, Kicklighter D, Gurgel A, Cronin T, Paltsev S, Felzer B, Wang X, Sokolov A, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399CrossRefGoogle Scholar
  19. Mickley LJ (2007) A future short of breath? Possible effects of climate change on smog. Environment 49:34–43CrossRefGoogle Scholar
  20. Monier E, Scott J, Sokolov AP, Forest CE and Schlosser CA (2012) An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM. MIT Joint Program Report 223, Cambridge, MA (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt223.pdf)
  21. Nam K-M, Selin N, Reilly J, Paltsev S (2010) Measuring welfare loss caused by air pollution in Europe: a CGE analysis. Energy Policy 38:5059–5071CrossRefGoogle Scholar
  22. Paltsev S and Reilly J (2006) Incorporating climate change feedbacks into a general economic equilibrium model, global trade analysis project. Purdue University, West Lafayette, IN. (https://www.gtap.agecon.purdue.edu/resources/download/2587.pdf)
  23. Paltsev S, Reilly J, Jacoby H, Eckaus R, McFarland J, Sarofim M, Asadoorian M and Babiker M (2005) The MIT Emissions Prediction and Policy Analysis (EPPA) model: version 4. MIT Joint Program Report 125, Cambridge, MA (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt125.pdf)
  24. Prinn R, Paltsev S, Sokolov A, Sarofim M, Reilly J, Jacoby H (2011) Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches. Clim Chang 104(3–4):515–537CrossRefGoogle Scholar
  25. Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy 35:5370–5383CrossRefGoogle Scholar
  26. Reilly J, Melillo J, Cai Y, Kicklighter D, Gurgel A, Paltsev S, Cronin T, Sokolov A, Schlosser A (2012) Using land to mitigate climate change: hitting the target, recognizing the tradeoffs. Environmental Science and Technology, 46(11):5672–5679Google Scholar
  27. Rutherford T and Paltsev S (1999) From an input–output table to a general equilibrium model: assessing the excess burden of indirect taxes in Russia. University of Colorado, Boulder, CO. (http://web.mit.edu/paltsev/www/docs/exburden.pdf)
  28. Sabine CL, Feely RA (2007) The oceanic sink for carbon dioxide. In: Reay D, Hewitt N, Grace J, Smith K (eds) Greenhouse gas sinks. CABI Publishing, Oxfordshire, pp 31–49CrossRefGoogle Scholar
  29. Schlosser CA, Kicklighter D and Sokolov A (2007) A global land system framework for integrated climate-change assessments. MIT Joint Program Report 147, Cambridge, MA. (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt147.pdf)
  30. Selin NE, Wu S, Nam K-M, Reilly JM, Paltsev S, Prinn RG, Webster MD (2009) Global health and economic impacts of future ozone pollution. Environ Res Lett 4(4):044014CrossRefGoogle Scholar
  31. Selin NE, Paltsev S, Wang C, van Donkelaar A and Martin RV (2011) Global aerosol health impacts: quantifying uncertainty. MIT Joint Program Report 203, Cambridge, MA, (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt203.pdf)
  32. Society R (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London, p 57Google Scholar
  33. Sokolov A, Monier E (2012) Changing the climate sensitivity of an atmospheric general circulation model through cloud radiative adjustment. J Climate. doi:10.1175/JCLI-D-11-00590.1
  34. Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter DW, Jacoby HD, Prinn RG, Forest CE, Reilly J, Wang C, Felzer B, Sarofim MC, Scott J, Stone PH, Melillo JM and Cohen J (2005) The MIT Integrated Global System Model (IGSM) Version 2: model description and baseline evaluation. MIT Joint Program Report 124, Cambridge, MA (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt124.pdf)
  35. Sokolov A, Stone P, Forest C, Prinn R, Sarofim M, Webster M, Paltsev S, Schlosser CA, Kicklighter D, Dutkiewicz S, Reilly J, Wang C, Felzer B, Melillo J, Jacoby H (2009) Probabilistic forecast for 21st century climate based on uncertainties in emissions (without policy) and climate parameters. J Climate 22(19):5175–5204CrossRefGoogle Scholar
  36. Strzepek K, Schlosser JCA, Farmer W, Awadalla S, Baker J, Rosegrant M, Gao X (2010) Modeling the global water resource system in an integrated assessment modeling framework: IGSM-WRS. MIT Joint Program Report 189, Cambridge, MA (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt189.pdf)
  37. Volney WJA, Fleming RA (2000) Climate change and impacts on boreal forest insects. Agric Ecosyst Environ 82:283–294CrossRefGoogle Scholar
  38. Wang C, Prinn RG, Sokolov A (1998) A global interactive chemistry and climate model: formulation and testing. J Geophys Res 103(D3):3399–3418CrossRefGoogle Scholar
  39. Webster M, Sokolov A, Reilly J, Forest C, Paltsev S, Schlosser A, Wang C, Kicklighter D, Sarofim M, Melillo J, Prinn R, Jacoby H (2012) Analysis of climate policy targets under uncertainty. Clim Chang 112(3–4):569–583CrossRefGoogle Scholar
  40. Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91(1):1–19CrossRefGoogle Scholar
  41. Wu SL, Mickley LJ, Jacob DJ, Rind D and Streets DG (2008a) Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States J Geophys Res-AtmosGoogle Scholar
  42. Wu SL, Mickley LJ, Leibensperger EM, Jacob DJ, Rind D and Streets DG (2008b) Effects of 2000–2050 global change on ozone air quality in the United States J Geophys Res-AtmosGoogle Scholar
  43. Yang T, Reilly J and Paltsev S (2005) Air pollution health effects: toward an integrated assessment, In: Haurie A and Viguier L (eds) The coupling of climate and economic dynamics. Springer, p 267–294Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • John Reilly
    • 1
  • Sergey Paltsev
    • 1
  • Ken Strzepek
    • 1
  • Noelle E. Selin
    • 1
  • Yongxia Cai
    • 1
  • Kyung-Min Nam
    • 1
  • Erwan Monier
    • 1
  • Stephanie Dutkiewicz
    • 1
  • Jeffery Scott
    • 1
  • Mort Webster
    • 1
  • Andrei Sokolov
    • 1
  1. 1.The MIT Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations