Climatic Change

, Volume 119, Issue 1, pp 95–109 | Cite as

Modelling the impact of climate change on Pacific skipjack tuna population and fisheries

  • Patrick Lehodey
  • Inna Senina
  • Beatriz Calmettes
  • John Hampton
  • Simon Nicol
Article

Abstract

IPCC-type climate models have produced simulations of the oceanic environment that can be used to drive models of upper trophic levels to explore the impact of climate change on marine resources. We use the Spatial Ecosystem And Population Dynamics Model (SEAPODYM) to investigate the potential impact of Climate change under IPCC A2 scenario on Pacific skipjack tuna (Katsuwonus pelamis). IPCC-type models are still coarse in resolution and can produce significant anomalies, e.g., in water temperature. These limitations have direct and strong effects when modeling the dynamics of marine species. Therefore, parameter estimation experiments based on assimilation of historical fishing data are necessary to calibrate the model to these conditions before exploring the future scenarios. A new simulation based on corrected temperature fields of the A2 simulation from one climate model (IPSL-CM4) is presented. The corrected fields led to a new parameterization close to the one achieved with more realistic environment from an ocean reanalysis and satellite-derived primary production. Projected changes in skipjack population under simple fishing effort scenarios are presented. The skipjack catch and biomass is predicted to slightly increase in the Western Central Pacific Ocean until 2050 then the biomass stabilizes and starts to decrease after 2060 while the catch reaches a plateau. Both feeding and spawning habitat become progressively more favourable in the eastern Pacific Ocean and also extend to higher latitudes, while the western equatorial warm pool is predicted to become less favorable for skipjack spawning.

Supplementary material

10584_2012_595_MOESM1_ESM.doc (1 mb)
ESM 1(DOC 1059 kb)

References

  1. Behrenfeld MJ, Falkowski PG (1997) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42(7):1479–1491CrossRefGoogle Scholar
  2. Bell JD, Reid C, Batty MJ, Allison EH, Lehodey P, Rodwell L, Pickering TD, Gillett R, Johnson JE, Hobday AJ, Demmke A (2011) Economic and social implications of climate change for contributions by fisheries and aquaculture to the Pacific Community. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 733–801Google Scholar
  3. Brill RW (1994) A review of temperature and O2 tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish Oceanogr 3:204–216CrossRefGoogle Scholar
  4. Carton JA, Chepurin G, Cao X, Giese BS (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–1995, part 1: methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  5. Ganachaud AS, Sen Gupta A, Orr JC, Wijffels SE, Ridgway KR, Hemer MA, Maes C, Steinberg CR, Tribollet AD, Qiu B, Kruger JC (2011) Observed and expected changes to the tropical Pacific Ocean. In: Bell J, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 115–202Google Scholar
  6. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 3: dissolved oxygen, apparent oxygen utilization, and oxygen saturation. In: Levitus S (ed) NOAA Atlas NESDIS 70. U.S. Government Printing Office, Washington, p 344Google Scholar
  7. Hourdin F, Foujols MJ, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2012) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim DynGoogle Scholar
  8. Hoyle S, Kleiber P, Davies N, Langley A, Hampton J (2011) Stock assessment of skipjack tuna in the western and central Pacific Ocean. Seventh Regular Session of the Scientific Committee, 9–17 August 2011, Pohnpei, Federated States of Micronesia, WCPFC-SC7-2011/SA-WP-04: p 134Google Scholar
  9. Langley A, Hampton J (2008) Stock assessment of skipjack tuna in the western and central Pacific Ocean. Fourth Regular Session of the Scientific Committee, 11–22 August 2008 Port Moresby, Papua New Guinea, WCPFC-SC4-2008/SA-WP-4: p 75Google Scholar
  10. Lehodey P (2001) The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO. Prog Oceanogr 49:439–468CrossRefGoogle Scholar
  11. Lehodey P, Bertignac M, Hampton J, Lewis T, Picaut J (1997) El Niño Southern Oscillation and tuna in the western Pacific. Nature 389:715–718CrossRefGoogle Scholar
  12. Lehodey P, Senina I, Murtugudde R (2008) A spatial ecosystem and populations dynamics model (SEAPODYM)—modelling of tuna and tuna-like populations. Prog Oceanogr 78:304–318CrossRefGoogle Scholar
  13. Lehodey P, Murtugudde R, Senina I (2010a) Bridging the gap from ocean models to population dynamics of large marine predators: a model of mid-trophic functional groups. Prog Oceanogr 84:69–84CrossRefGoogle Scholar
  14. Lehodey P, Senina I, Sibert J, Bopp L, Calmettes B, Hampton J, Murtugudde R (2010b) Preliminary forecasts of population trends for Pacific bigeye tuna under the A2 IPCC scenario. Prog Oceanogr 86:302–315CrossRefGoogle Scholar
  15. Lehodey P, Hampton J, Brill RW, Nicol S, Senina I, Calmettes B, Pörtner HO, Bopp L, Ilyina T, Bell JD, Sibert J (2011a) Vulnerability of oceanic fisheries in the tropical Pacific to climate change. In: Bell J, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 447–506Google Scholar
  16. Lehodey P, Senina I, Calmettes B, Hampton J, Nicol S, Williams P, Jurado Molina J, Ogura M, Kiyofuji H, Okamoto S (2011b) SEAPODYM working progress and applications to Pacific skipjack tuna population and fisheries. 7th regular session of the Scientific Steering Committee, 8–17 August 2011, Pohnpei, Federate States of Micronesia. WCPFC-SC7-2011/EB- WP 06. http://www.wcpfc.int/meetings/2011/7th-regular-session-scientific-committee
  17. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. U.S. Government Printing Office, Washington, p 184Google Scholar
  18. Lutcavage ME, Brill RW, Skomal GB, Chase BC, Goldstein JL, Tutein J (2000) Tracking adult North Atlantic bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Mar Biol 137:347–358CrossRefGoogle Scholar
  19. Nakicenovic N, Alcamo J, Davis G, De Vries B et al (2000) Special report on emissions scenarios: a special report of the working group III of the intergovernmental panel on climate change. PNNL-SA-39650. Cambridge University Press, New YorkGoogle Scholar
  20. Schaefer KM (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean. IATTC Bull 21(5):205–272Google Scholar
  21. Schaefer KM (2001) Assessment of skipjack tuna (Katsuwonus pelamis) spawning activity in the eastern Pacific Ocean. Fish Bull 99:343–350Google Scholar
  22. Schneider B, Bopp L, Gehlen M, Segschneider TL, Frölicher J, Cadule P, Friedlingstein P, Doney SC, Behrenfeld MJ, Joos F (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosci 5:597–614CrossRefGoogle Scholar
  23. Senina I, Sibert J, Lehodey P (2008) Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: application to skipjack tuna. Prog Oceanogr 78:319–335, 4CrossRefGoogle Scholar
  24. Sibert JR, Hampton J, Fournier DA, Bills PJ (1999) An advection–diffusion reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can J Fish Aquat Sci 56:925–938Google Scholar
  25. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, CambridgeGoogle Scholar
  26. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosci 7:979–1005CrossRefGoogle Scholar
  27. Sund PN, Blackburn M, Williams F (1981) Tunas and their environment in the Pacific Ocean: a review. Oceanogr Mar Biol Ann Rev 19:443–512Google Scholar
  28. Wexler J, Margulies D, Scholey V (2011) Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae. J Exp Mar Biol Ecol 404:63–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Patrick Lehodey
    • 1
  • Inna Senina
    • 1
  • Beatriz Calmettes
    • 1
  • John Hampton
    • 2
  • Simon Nicol
    • 2
  1. 1.CLS, Space Oceanography DivisionRamonville Saint-AgneFrance
  2. 2.Secretariat of the Pacific CommunityNoumea cedexNew Caledonia

Personalised recommendations