Climatic Change

, Volume 117, Issue 1–2, pp 305–317 | Cite as

Climate change impacts on invasive potential of pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in Chile

  • Valentina Jara
  • Francisco J. Meza
  • Tania Zaviezo
  • Rodrigo Chorbadjian


Maconellicoccus hirsutus (Green) (Hemiptera:Pseudoccidae) is an important pest in many countries being responsible for considerable economic loses. Although it is not currently present in Chile, the chance that it could be accidentally introduced rises with the list of infested countries increasing over the last years. In addition, climate change projections indicate that a larger region would fit as potential habitat for this pest, allowing it to persist over time and colonize a larger proportion of the Chilean territory. In this study the geographic distribution and the number of generations this mealybug would develop in Chile were determined, under current temperatures and under two projected climatic scenarios. Cumulative degree days were calculated for current and future scenarios using a lower temperature threshold of 14.5 °C, with 624.5 degree-days as the thermal requirement for the species to complete one generation. The results show that under current climate conditions M. hirsutus could develop up to three generations in the north of the country (i.e. 18° South) and one generation in the region near 37° South. Under future scenarios’ conditions the pest could develop up to five generations in the north, and one generation around the 42° South. Present climate conditions in Chile would allow the establishment of the pink hibiscus mealybug, if the pest enters the country. Climate change conditions would allow the potentially invaded area to expand south, and would promote the development of more generations per year of the mealybug in the studied territory.


Future Scenario Ordinary Kriging Invasive Potential Central Valley Thermal Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Juang-Horng Chong and Dr. Ayub Khan for their valuable information. This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) SGP-HD #003 which is supported by the US National Science Foundation (Grant GEO-0642841) and with the aid of FONDECYT throughout Grant 1090393.


  1. Arnell NW (2003) Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain. J Hydrol 270:19–213CrossRefGoogle Scholar
  2. Bergant K, Trdan S, Znidarcic D, Crepinsek Z, Kajfez-Bogataj L (2005) Impact of climate change on development dynamics of Thrips tabaci (Thysanoptera: Thripidae): can it be quantified? Environ Entomol 34:755–766CrossRefGoogle Scholar
  3. Blanco CA, Hernández G (2006) Prediction of masked chafer, Cyclocephala pasadenae, capture in light traps using a degree-day model. J Insect Sci 6(36):6CrossRefGoogle Scholar
  4. Brewer MJ, Hoff KM (2002) Degree-day accumulation to time initiation of sampling for alfalfa weevil using on-site, near-site, and regional temperature data. J Agr Urban Entomol 19:141–149Google Scholar
  5. Chong J-H, Roda AL, Mannion CM (2008) Life history of the mealybug, Maconellicoccus hirsutus (Hemiptera: Pseudococcidae), at constant temperatures. Environ Entomol 37:323–332CrossRefGoogle Scholar
  6. Cividanes FJ, Carvalho DR (2000) Uso de Graus-dia para a Previsao de Ocorrencia de Ninfas e Adultos de Piezodorus guildinii (West.) (Heteroptera: Pentatomidae) em Soja. An Soc Entomol Bras 29:269–275CrossRefGoogle Scholar
  7. COSAVE (2006) Listado de las principales plagas reglamentadas para la región del COSAVE. Versión 4, pp. 6. On line at
  8. DGF-CONAMA (2006) Estudio de la variabilidad climática en Chile para el Siglo XXI. Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile y Comisión Nacional del Medio Ambiente, Gobierno de Chile, Santiago, Chile, pp. 71Google Scholar
  9. DMC (1993–1998) Anuario Meteorológico 1993. Dirección General de Aeronáutica Civil, Dirección Meteorológica de Chile, Subdirección de Climatología y Meteorología Aplicada, Santiago, ChileGoogle Scholar
  10. DMC (1999–2003) Anuario Agrometeorológico. Regiones IV, V, Metropolitana, VI y VII. Temporada Agrícola Mayo–Abril. Dirección Meteorológica de Chile, Sub-departamento de Climatología y Meteorología Aplicada, Sección Meteorología Aplicada, Santiago, ChileGoogle Scholar
  11. Fortin MJ, Dale M (2005) Spatial analysis, a guide for ecologists. Cambridge University Press, pp. 365Google Scholar
  12. Fuenzalida H (2007) Clima de Chile para fines del Siglo XXI: Simulaciones con Modelo PRECIS bajo escenarios A2 y B2 del IPCC. Revista Ambiente y Desarrollo 23:9–14Google Scholar
  13. Ghose SK (1961) Studies on some coccids (Coccoidea: Hemiptera) of economic importance of West Bengal, India. Indian Agriculturist 6:57–78Google Scholar
  14. Ghose SK (1972) Morpho-histological changes in some economic plants due to the infestation of mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). Indian J Agr Sci 42:329–334Google Scholar
  15. Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agr Forest Entomol 3:233–240CrossRefGoogle Scholar
  16. Hartkamp AD, de Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables. CIMMYT Natural Resources Group, Wageningen Agricultural University, Wageningen, The Netherlands, pp. 34Google Scholar
  17. Hoy MA, Hamon A, Nguyen R (2002) Pink hibiscus mealybug, Maconellicoccus hirsutus (Green). EENY-029, Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, pp. 6Google Scholar
  18. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge; United Kingdom and New York; NY,USA, pp. 996Google Scholar
  19. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, p 40Google Scholar
  20. Kairo MTK, Pollard GV, Peterkin DD, Lopez VF (2000) Biological control of the hibiscus mealybug, Maconellicoccus hirsustus Green (Hemiptera: Pseudococcidae) in the Caribbean. Integrated Pest Manag Rev 5:241–254CrossRefGoogle Scholar
  21. Kennedy GG, Storer NP (2000) Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu Rev Entomol 45:467–493CrossRefGoogle Scholar
  22. Marcano R, Malpica T, Sequera L (2006) Evaluación de insecticidas para el control de la cochinilla rosada Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) en el laboratorio. Entomotrópica 21:125–128Google Scholar
  23. Meyerdirk D, Warkentin R, Attavian B, Gersabeck E, Francis A, Adams M, Francis G (2001) Biological control of pink hibiscus mealybug project manual. USDA, APHIS, Plant Protection and Quarantine, pp. 194Google Scholar
  24. Nakicenovic N, Davidson O, Davis G et al (2000) Special Report on Emissions Scenarios—Summary for Policymakers. A Special Report of Working Group III, Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY, pp. 27Google Scholar
  25. Nietschke BS, Borchert DM, Magarey RD, Ciomperlik MA (2008) Climatological potential for Scirtothrips dorsalis (Thysanoptera: Thripidae) establishment in the United States. Florida Entomologist 91:79–86CrossRefGoogle Scholar
  26. ODEPA (2005) Compendio Estadístico Silvoagropecuario 1990–2004. Oficina de Estudios y Políticas Agrarias, Ministerio de Agricultura, Gobierno de Chile, Santiago, Chile, pp. 163Google Scholar
  27. Pasiecznik NM, Smith IM, Watson GW, Brunt AA, Ritchie B, Charles LMF (2005) CABI /EPPO distribution maps of plant pests and plant diseases and their important role in plant quarantine. OEPP/EPPO Bull 35:1–7Google Scholar
  28. Persad A, Khan A (2007) Effects of four host plants on biological parameters of Maconellicoccus hirsutus Green (Homoptera: Pseudococcidae) and efficacy of Anagyrus kamali Moursi (Hymenoptera: Encyrtidae). J Plant Protect Res 47:35–42Google Scholar
  29. Petzoldt C, Seaman A (2006) Climate change effects on insects and pathogens. Fact sheet, Climate Change and Agriculture: Promoting Practical and Profitable Responses. Online at
  30. Pitcairn MJ, Zalom FG, Rice RE (1992) Degree-day forecasting of generation time of Cydia pomonella (Lepidoptera: Tortricidae) populations in California. Environ Entomol 21:441–446Google Scholar
  31. Ranjan R (2006) Economic impacts of Pink Hibiscus Mealybug in Florida and the United States. Stoch Environ Res Risk Assess 20:353–362CrossRefGoogle Scholar
  32. Roltsch WJ, Zalom FG, Strawn AJ, Strand JF, Pitcairn MJ (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42:169–176CrossRefGoogle Scholar
  33. Roltsch WJ, Meyerdirk DE, Warkentin R, Andress ER, Carrera K (2006) Classical biological control of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in southern California. Biol Contr 37:155–166CrossRefGoogle Scholar
  34. SAG (2007) Resolución 792, Modifica la Resolución N°3.080 de 2003 que Establece Criterios de Regionalización y Deroga Resolución N°521 de 2005, Actualizando la Lista de Plagas Cuarentenarias. Servicio Agrícola y Ganadero, Ministerio de Agricultura, Gobierno de Chile, Santiago, Chile, pp. 19Google Scholar
  35. Sagarra LA, Vincent C, Peters NF, Stewart RK (2000) Effect of host density, temperature, and photoperiod on the fitness of Anagyrus kamali, a parasitoid of the hibiscus mealybug Maconellicoccus hirsutus. Entomol Exp Appl 96:141–147CrossRefGoogle Scholar
  36. Trudgill DL, Honek A, Li S, van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14CrossRefGoogle Scholar
  37. Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298Google Scholar
  38. Zaviezo T, Cadena E, Flores MF, Bergmann J (2010) Influence of different substrates on development and reproduction in laboratory rearing of Pseudococcus calceolariae (Maskell) (Hemiptera: Pseudococcidae). Cienc Investig Agrar 37:31–37Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Valentina Jara
    • 1
    • 2
  • Francisco J. Meza
    • 2
    • 3
  • Tania Zaviezo
    • 4
  • Rodrigo Chorbadjian
    • 1
  1. 1.Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro Interdisciplinario de Cambio GlobalPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations