Climatic Change

, Volume 116, Issue 3–4, pp 705–722 | Cite as

Changes in extreme daily rainfall for São Paulo, Brazil

  • Maria A. F. Silva Dias
  • Juliana Dias
  • Leila M. V. Carvalho
  • Edmilson D. Freitas
  • Pedro L. Silva Dias
Article

Abstract

Significant positive trends are found in the evolution of daily rainfall extremes in the city of São Paulo (Brazil) from 1933 to 2010. Climatic indices including ENSO, PDO, NAO and the sea surface temperature at the coast near São Paulo explain 85 % of the increasing frequency of extremes during the dry season. During the wet season the climatic indices and the local sea surface temperature explain a smaller fraction of the total variance when compared to the dry season indicating that other factors such as the growth of the urban heat island and the role of air pollution in cloud microphysics need to be taken into account to explain the observed trends over the almost eight decades.

Supplementary material

10584_2012_504_MOESM1_ESM.pdf (530 kb)
ESM 1(PDF 529 kb)

References

  1. Berbery EH, Doyle ME, Barros V (2006) Tendencias regionales en la precipitación. In: Barros V, Clarke R, Silva Días P (eds) El cambio climático en la Cuenca del Plata. CONICET, Buenos Aires, pp 67–92Google Scholar
  2. Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–516CrossRefGoogle Scholar
  3. Carrió G, Cotton WR (2011) Effects of the urban growth of Houston on convection and precipitation. Part II: dependence of aerosol effects on instability. Atmos Res 97. doi:10.1016/j.atmosres.2011.06.022
  4. Carrió G, Cotton WR, Cheng YY (2010) Effects of the urban growth of Houston on convection and precipitation. Part I: the August 2000 case. Atmos Res 96:560–574. doi:10.1016/j.atmosres.2010.01.005 CrossRefGoogle Scholar
  5. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108. doi:10.1175/1520-0442(2004) 017<0088:TSACZI>2.0.CO;2CrossRefGoogle Scholar
  6. Carvalho LMV, Jones C, Silva AE, Liebmann B, Silva Dias PL (2010) The South American Monsoon System and the 1970s climate transition. Int J Climatol 31:1248–1256. doi:10.1002/joc.2147 CrossRefGoogle Scholar
  7. Chagnon SA (1979) Precipitation changes in summer caused by St. Louis. Science 205:402–404CrossRefGoogle Scholar
  8. Changnon SA, Shealy RT, Scott RW (1991) Precipitation changes in fall, winter, and spring caused by St. Louis. J Appl Meteorol 30:126–134CrossRefGoogle Scholar
  9. Chen WY, van den Dool H (2003) Sensitivity of teleconnection patterns to the sign of their primary action center. Mon Wea Rev 131:2885–2899CrossRefGoogle Scholar
  10. Chiang JCH, Vimont DJ (2004) Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  11. Cooley D (2009) Extreme value analysis and the study of climate change. Climatic Change 97:77–83. doi:10.1007/s10584-009-9627-x Google Scholar
  12. Dufek AS, Ambrizzi T (2008) Precipitation variability in São Paulo State, Brazil. Theor Appl Climatol 93:167–178. doi:10.1007/s00704-007-0348-7 CrossRefGoogle Scholar
  13. Freitas ED, Rozoff CM, Cotton WR, Silva Dias PL (2007) Interactions of an urban heat island and sea breeze circulations during winter over the Metropolitan Area of São Paulo—Brazil. Boundary - Layer Meteorol 122:43–65CrossRefGoogle Scholar
  14. Freitas ED, Silva Dias PL, Carvalho VSB, Rocha CRM, Martins LD, Martins JA, Andrade MF (2009) Factors involved in the formation and development of severe weather conditions over the megacity of São Paulo. Eighth Symposium on the Urban Environment, Modeling and Forecasting in Urban Areas. Proceedings of the 89th AMS Annual Meeting, 2009Google Scholar
  15. Grimm AM, Silva Dias PL (1995) Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J Atmos Sci 52:3538–3555CrossRefGoogle Scholar
  16. Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American Rainfall in 1960–2000 and links with Sea Surface Temperature. J Clim 19:1490–1512CrossRefGoogle Scholar
  17. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679CrossRefGoogle Scholar
  18. Janowiak JE, Gruber A, Kondragunta CR, Livezey RE, Huffman GJ (1998) A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J Clim 11:2960–2979. doi:10.1175/1520-0442(1998) 011<2960:ACOTNN>2.0.CO;2CrossRefGoogle Scholar
  19. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  20. Kalnay E et al (1996) The NCEP/NCAR reanalysis 40-year project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  21. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444. doi:10.1175/JCLI4066.1 CrossRefGoogle Scholar
  22. Liebmann B, Jones C, Carvalho LMV (2001) Interannual variability of daily extreme precipitation events in the state of Sâo Paulo, Brazil. J Clim 14:208–217CrossRefGoogle Scholar
  23. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  24. Marengo JA, Liebmann B, Kousky VE, Filizola NP, Wainer IC (2001) Onset and end of the rainy season in the Brazilian Amazon basin. J Clim 14:833–852. doi:10.1175/1520-0442(2001) 014<0833:OAEOTR>2.0.CO;2CrossRefGoogle Scholar
  25. Min S-K, Zhang X, Zwiers FW, Heger GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi:10.1038/nature09763 CrossRefGoogle Scholar
  26. Penalba O, Robledo FA (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Chang 98(3–4):531–550CrossRefGoogle Scholar
  27. Pereira Filho AJ, Santos PM, Camargo R, Festa M, Funari FL, Salum ST, Oliveira CT, Santos EM, Lourenço PR, Silva EG, Garcia W, Fialho MA (2007) Caracterização do Clima e sua Evolução na Região Metropolitana de São Paulo. In: Pereira Filho; Marques dos Santos; Xavier. (Org.) Evolução do Tempo e do Clima na Região Metropolitana de São Paulo, 1 ed. Linear B, São Paulo, vol 1, pp 99–120 (in Portuguese)Google Scholar
  28. Rana A, Uvo CB, Bengtsson L, Parth Sarthi P (2011) Trend analysis for rainfall in Delhi and Mumbai, India. Clim Dyn. doi:10.1007/s00382-011-1083-4
  29. Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of southeastern SouthAmerica. J Clim 11:2570–2581CrossRefGoogle Scholar
  30. Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31:L09204. doi:09210.01029/02004GL019448,012004 CrossRefGoogle Scholar
  31. Satyamurty P, Nobre CA, Silva Dias P (1998) South America. In: Karoly D, Vincent DG (ed) Meteorology of the southern hemisphere. Meteorol Monogr 27, 119–139Google Scholar
  32. Shepherd JM, Pierce H, Negri AJ (2002) Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. J Appl Meteorol 41:689–701CrossRefGoogle Scholar
  33. Silva Dias MAF, Vidale PL, Blanco CMR (1995) Case study and numerical simulation of the summer regional circulation in Sao Paulo, Brazil. Boundary - Layer Meteorol 74:371–388CrossRefGoogle Scholar
  34. Silva AE, Carvalho LMV (2007) Large-scale index for South America Monsoon (LISAM). Atmos Sci Lett 8:51–57. doi:10.1002/asl.150 CrossRefGoogle Scholar
  35. Sugahara S, Rocha RP, Silveira R (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int J Climatol 29:1339–1349. doi:10.1002/joc.1760 Google Scholar
  36. Sugahara S, Rocha RP, Ynoue RY, Silveira RB (2011) Homogeneity assessment of a station climate series (1933–2005) in the Metropolitan Area of São Paulo: instruments change and urbanization effects. Theor Appl Climatol. doi:10.1007/s00704-011-0485-x
  37. Towler E, Rajagopalan B, Gilleland E, Summers RS, Yates D, Katz RW (2010) Modeling hydrologic and water quality extremes in a changing climate: a statistical approach based on extreme value theory. Water Resour Res 46:W11504. doi:10.1029/2009WR008876 CrossRefGoogle Scholar
  38. Villaça FJM (1978) The territorial structure of the Brazilian Southern megacity (A estrutura territorial da metrópole sul brasileira). Ph. D. Thesis. FFLCH/USP, Departamento de Geografia. (in Portuguese)Google Scholar
  39. Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. International Geophysics Series, vol 91, Academic Press, 627 ppGoogle Scholar
  40. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 52–57Google Scholar
  41. Xavier TMS, Xavier AFS, Silva Dias MAF (1994) Evolução da precipitação diária num ambiente urbano: o caso da cidade de São Paulo. Rev Bras Meteorol 9:44–53 (in Portuguese)Google Scholar
  42. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  43. Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J. Clim 17:1945–1952Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maria A. F. Silva Dias
    • 1
  • Juliana Dias
    • 2
  • Leila M. V. Carvalho
    • 3
  • Edmilson D. Freitas
    • 1
  • Pedro L. Silva Dias
    • 4
    • 5
  1. 1.Departamento de Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  2. 2.Earth System Research LaboratoryNOAABoulderUSA
  3. 3.University of California at Santa BarbaraSanta BarbaraUSA
  4. 4.Departamento de Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  5. 5.Laboratório Nacional de Computação CientíficaPetrópolisBrazil

Personalised recommendations