Advertisement

Climatic Change

, Volume 115, Issue 3–4, pp 611–628 | Cite as

A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050

  • Julian Ramirez-Villegas
  • Mike Salazar
  • Andy Jarvis
  • Carlos E. Navarro-Racines
Article

Abstract

Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14 % of national GDP corresponding to agriculture, employment of 21 % of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80 % of crops would be impacted in more than 60 % of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation.

Keywords

Sugarcane Cassava Adaptation Strategy Colombia Climate Change Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Sam Fujisaka, Alexandra Walter and Charlotte Lau for their editorial work. The authors also thank the United Nations Development Programme (UNDP) and the Colombian Ministry of Agriculture and Rural Development (MADR) for providing the funds for the development of the analyses presented on this paper. We also thank Rebecca Carman and Oscar Esnoz from UNDP, as well as participants in the National Dialogue on Climate Change (Bogotá, Colombia, 4–5 August 2009) coordinated by UNDP. We also thank Emmanuel Zapata from the International Center for Tropical Agriculture (CIAT) for his contributions to preliminary versions of this paper in Spanish and the three anonymous reviewers for their insightful comments.

Supplementary material

10584_2012_500_MOESM1_ESM.pdf (194 kb)
ESM 1 (PDF 194 kb)

References

  1. Arguello RC, Lozano MC (2007) Agricultural sector and competition policy in Colombia. Universidad del Rosario, Facultad de Economía, BogotáGoogle Scholar
  2. Baigorria GA, Jones JW, Shin DW, Mishra A, Brien JJ (2007) Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Clim Res 34:211–222CrossRefGoogle Scholar
  3. Bedõ Z, Láng L, Veisz O, Vida G (2005) Breeding of winter wheat (Triticum aestivum L.) for different adaptation types in multifunctional agricultural production. Turk J Agric For 29:151–156Google Scholar
  4. Berry A (1995) The contribution of agriculture to growth: Colombia. In: Mellor JW (ed) Agriculture on the Road to Industrialization. Johns Hopkins University Press, Baltimore, pp 263–306Google Scholar
  5. Boo K-O, Martin G, Sellar A, Senior C, Byun Y-H (2011) Evaluating the East Asian monsoon simulation in climate models. J Geophys Res 116:D01109CrossRefGoogle Scholar
  6. Byjesh K, Kumar S, Aggarwal P (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strateg Glob Chang 15:413–431CrossRefGoogle Scholar
  7. Camacho-Tamayo JH, Luengas CA, Leiva FR (2008) Effect of agricultural intervention on the spatial variability of some soils chemical properties in the eastern plains of Colombia. Chil J Agr Res 68:42–55Google Scholar
  8. Challinor AJ, Wheeler TR (2008) Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agric For Meteorol 148:1062–1077CrossRefGoogle Scholar
  9. Challinor AJ, Wheeler TR, Craufurd PQ, Ferro CAT, Stephenson DB (2007) Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric Ecosyst Environ 119:190–204CrossRefGoogle Scholar
  10. DANE (2007) Sistema de información de la oferta agropecuaria: Encuesta nacional agropecuaria 2007. Ministerio de Agricultura y Desarrollo Rural (MADR), Corporación Colombia Internacional, Departamento Administrativo Nacional de Estadística (DANE), Bogotá, Colombia, p 143Google Scholar
  11. DANE (2011) In: Estadística DANd (ed) Statistical database. DANE, BogotáGoogle Scholar
  12. Deininger K, Lavadenz I (2004) Colombia: Política agraria en transición. En breve. World Bank.Google Scholar
  13. Erickson B (2006) Precision agriculture in Colombian sugar cane. Site Specific Management Center Newsletter.Google Scholar
  14. Eslava JA, Pabon JD (2001) Proyecto: proyecciones climáticas e impactos socioeconómicos del cambio climático en Colombia. Meteorología Colombiana 3:1–8Google Scholar
  15. Garrett K, Forbes G, Pancle S, Savary S, Sparks A, Valdivia C, Cruz CV, Willocquet L (2009) Anticipating and responding to biological complexity in the effects of climate change on agriculture. IOP Conf Ser Earth Environ Sci 6:372007. doi: 10.1088/1755-1307/6/37/372007 CrossRefGoogle Scholar
  16. Gerald CN (2009) Agriculture and climate change: an agenda for negotiation in Copenhagen. 2020. Vision for Food, Agriculture, and the Environment.Google Scholar
  17. Gregory PJ, Ingram JSI, Brklacich M (2005) Climate change and food security. Phil Trans Biol Sci 360:2139–2148CrossRefGoogle Scholar
  18. Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838CrossRefGoogle Scholar
  19. Herrera Campo B, Hyman G, Bellotti A (2011) Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Secur 1–17Google Scholar
  20. Hijmans RJ, Forbes GA, Walker TS (2000) Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol 49:697–705CrossRefGoogle Scholar
  21. Hoyos IC, Baquero-Bernal A (2010) Study of extreme events on Colombia using a regional climate model. Dynamics Days South America 2010: International Conference on Chaos and Nonlinear Dynamics, Sao Jose dos Campos, SP, BrazilGoogle Scholar
  22. Hoyos-Rincon IC, Baquero-Bernal A (2011) Extreme events in the Colombian pacific and Caribbean catchment basins. Geophys Res Abstr 13:1922Google Scholar
  23. Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Phil Trans Biol Sci 365:3247–3260CrossRefGoogle Scholar
  24. IDEAM (2001) Colombia: primera comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM, Bogotá, Colombia, p 307Google Scholar
  25. IPCC (2000) Special report on emission scenarios. IPCC, GenevaGoogle Scholar
  26. IPCC (2001) IPCC third assessment report: climate change 2001 (TAR). IPCC, GenevaGoogle Scholar
  27. IPCC (2007) IPCC fourth assessment report: climate change 2007 (AR4). IPCC, GenevaGoogle Scholar
  28. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling H-M, Borgemeister C (2009) Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4:e6487CrossRefGoogle Scholar
  29. Jarvis A, Ramirez J, Anderson B, Leibing C, Aggarwal P (2010) Scenarios of climate change within the context of agriculture. CAB International.Google Scholar
  30. Jarvis A, Lau C, Cook S, Wollenberg E, Hansen J, Bonilla O, Challinor A (2011a) An integrated adaptation and mitigation framework for developing agricultural research: synergies and trade-offs. Exp Agric 47:185–203CrossRefGoogle Scholar
  31. Jarvis A, Ramirez-Villegas J, Bonilla-Findji O, Zapata E (2011b) Chapter 3.1: impacts of climate change on crop production in Latin America. Wiley & SonsGoogle Scholar
  32. Krishnan P, Swain DK, Chandra Bhaskar B, Nayak SK, Dash RN (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ 122:233–242CrossRefGoogle Scholar
  33. Laderach P, Jarvis A, Lundy M, Ramirez J, Eitzinger A (2011) Impact of climate change on coffee production and coffee supply chains. Climatic Change in pressGoogle Scholar
  34. MADR, IICA (2005) Observatorio agrocadenas: documentos de caracterización sectorial y de trabajo del sector agropecuario colombiano. Ministerio de Agricultura y Desarrollo Rural (MADR), Instituto Interamericano de Cooperación para la Agricultura (IICA), Bogotá, ColombiaGoogle Scholar
  35. Moriondo M, Giannakopoulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Chang 104:679–701CrossRefGoogle Scholar
  36. Motha RP (2007) Development of an agricultural weather policy. Agric For Meteorol 142:303–313CrossRefGoogle Scholar
  37. Mulligan M, Fisher M, Sharma B, Xu ZX, Ringler C, Mahé G, Jarvis A, Ramírez J, Clanet J-C, Ogilvie A, M-u-D A (2011) The nature and impact of climate change in the Challenge Program on Water and Food (CPWF) basins. Water Int 36:96–124CrossRefGoogle Scholar
  38. Norton RD, Balcázar AV (2003) A study of Colombia’s agricultural and rural competitiveness. Report to United Nations Food and Agriculture Organization, The World Bank and United States Agency for International Development, Washington DC, USAGoogle Scholar
  39. Pabon JD (2003) El cambio climático global y su manifestación en Colombia. Cuadernos Geográficos 12:111–119Google Scholar
  40. Pabon JD (2005) Escenarios de cambio climático para territorio colombiano. Documento INAPPDF-B/GECC/I. Universidad Nacional de Colombia y Conservación Internacional, Bogotá, ColombiaGoogle Scholar
  41. Pabón JD, Cárdenas I, Kholostyakov R, Calderón AF, Bernal N, Ruiz F (2001) Escenarios climáticos para el siglo XXI sobre el territorio colombiano. Nota técnica interna del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, ColombiaGoogle Scholar
  42. Poveda G, Álvarez D, Rueda Ó (2010) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Anglais 1–17Google Scholar
  43. Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob Chang Biol 8:710–721CrossRefGoogle Scholar
  44. Ramirez-Villegas J, Jarvis A (2010) Downscaling Global Circulation Model Outputs: The Delta Method. Decision and Policy Analysis Working Paper No. 1. Decision and Policy Analysis Working Papers. International Center for Tropical Agriculture (CIAT), Cali, Colombia.Google Scholar
  45. Ramirez-Villegas J, Jarvis A, Läderach P (2011a) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agricultural and Forest MeteorologyGoogle Scholar
  46. Ramirez-Villegas J, Jarvis A, Van den Bergh I, Staver C, Turner D (2011b) Chapter 20: Changing Climates: Effects on Growing Conditions for Banana and Plantain (Musa spp.) and Possible Responses. Wiley & Sons.Google Scholar
  47. Reifen C, Toumi R (2009) Climate projections: past performance no guarantee of future skill? Geophys Res Lett 36:L13704CrossRefGoogle Scholar
  48. Ruiz F (2007) Escenarios de cambio climático, algunos modelos y resultados de lluvia para Colombia bajo el escenario A1B. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Subdirección de Meteorología, Bogotá, ColombiaGoogle Scholar
  49. Schepp K, Laderach P (2008) Climate change adaptation for small coffee growers. In: Martinez-Alonso C (ed) Abstracts International Workshop Adaptation to Climate Change: The Role of Ecosystem Services, SIAASE 2008. SIAASE, Turrialba, pp 89–90Google Scholar
  50. Schroth G, Laderach P, Dempewolf J, Philpott S, Haggar J, Eakin H, Castillejos T, Garcia Moreno J, Soto Pinto L, Hernandez R, Eitzinger A, Ramirez-Villegas J (2009) Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig Adapt Strateg Glob Chang 14:605–625CrossRefGoogle Scholar
  51. Sivakumar MVK, Das HP, Brunini O (2005) In: Salinger J, Sivakumar MVK, Motha RP (eds) Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics: Increasing Climate Variability and Change. Springer, Netherlands, pp 31–72Google Scholar
  52. Srivastava A, Naresh Kumar S, Aggarwal PK (2010) Assessment on vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138:160–169CrossRefGoogle Scholar
  53. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 398:694–697CrossRefGoogle Scholar
  54. UN (1992) United Nations Framework Convention on Climate Change. In: UNFCCC (ed.) FCCC/INFORMAL/84Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Julian Ramirez-Villegas
    • 1
    • 2
    • 3
  • Mike Salazar
    • 1
  • Andy Jarvis
    • 1
    • 2
    • 4
  • Carlos E. Navarro-Racines
    • 1
    • 2
  1. 1.International Center for Tropical Agriculture (CIAT)CaliColombia
  2. 2.CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)CaliColombia
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  4. 4.Bioversity InternationalRegional Office for the AmericasCaliColombia

Personalised recommendations