Climatic Change

, Volume 114, Issue 2, pp 343–355 | Cite as

Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944

  • José L. MartínEmail author
  • José Bethencourt
  • Emilio Cuevas-Agulló


Temperature variation is studied at different altitudes and orientation on the island of Tenerife, according to the trends in the mean, maximum and minimum at 21 meteorological stations. Reference series are obtained by sectors, along with a representative overall series for Tenerife, in which temperature shows a statistically significant growth trend of 0.09 ± 0.04°C/decade since 1944. Night-time temperatures have risen most (0.17°C ± 0.04°C/decade), while by day they have been more stable. Consequently, the diurnal temperature range between day and night has narrowed. By regions, warming has been much more intense in the high mountains than the other sectors below the inversion layer between 600 and 1,400 m altitude, and progressively milder towards the coast. The temperature rise on the windward (north-northeast) slopes is greater than on the leeward side and could be related to the increase in cloudiness on the northern side. The general warming of the island is less than in continental areas at between 24 and 44ºN, being closer to the sea surface temperature in the same area. This is probably explained largely by the insular conditions. In fact warming is more evident in the high mountains (0.14 ± 0.07°C/decade), where the tempering effect of the ocean and the impact of changes in the stratocumulus is weaker, being similar to the mean continental values in the northern hemisphere.


High Mountain Trade Wind Inversion Layer Diurnal Temperature Range Leeward Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our research is part of studies undertaken for the project ClimaImpacto MAC/3/C159 within the transnational cooperation programme of the European Union MAC 2007–2013, led by the Canary Island Agency for Sustainable Development and Climate Change. The authors wish to express their gratitude to the Canary Islands department of the State Meteorological Agency of Spain (AEMET) for the provision of basic climate information, to Enric Palle from the “Instituto de Astrofísica de Canarias” for his suggestions on the original manuscript and to G. Jones for his assistance with the English text. The thoughtful comments of three anonymous referees, leading to significant improvements of this paper, are also gratefully acknowledged.

Supplementary material

10584_2012_407_MOESM1_ESM.doc (242 kb)
ESM 1 (DOC 241 kb)


  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP Guidelines Series, WMO/TD nº 1186, P Llansó (ed.), 50 pp., GenevaGoogle Scholar
  2. Alexandersson HA (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  3. Alexandersson H, Moberg (1997) A homogenization of Swedish temperature data. Part I: homogeneity test for linear trends. Int J Climatol 17:25–34CrossRefGoogle Scholar
  4. Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190CrossRefGoogle Scholar
  5. Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieh century. Geophys Res Lett 32:L13217. doi: 10.1029/20046L019998 CrossRefGoogle Scholar
  6. Brunet M, Jones PD, Sigro J, Daladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi: 10.1029/2006JD008249 CrossRefGoogle Scholar
  7. Costa AC, Soares A (2009) Homogenization of climate data: review and new perspectives using geostatistics. Math Geosci 41:291–305CrossRefGoogle Scholar
  8. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds soil moisture, precipitation and water vapor on diurnal temperature range. J Climate 12:2451–2473CrossRefGoogle Scholar
  9. Diaz HF, Bradley RD (1997) Temperature variations during the last century at high elevation sites. Clim Change 36:253–279CrossRefGoogle Scholar
  10. Dorta P (1996) Las inversiones térmicas en Canarias. Investigaciones geográficas 15:109–124Google Scholar
  11. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) A new look at maximum and minimum temperature trends for the globe. Science 277:364–367CrossRefGoogle Scholar
  12. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemanns J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: Houghton JH, Ding Y, Griggs DJ, Noguer M, van der Linder PJ, Dai X, Maskell K, Johnson CA (eds) “The scientific basis—contribution of working group I to the third assessment report of the intergovernmental panel on climate change”. Cambridge Univ. Press, New York, pp 99–181Google Scholar
  13. Font I (1956) El Tiempo Atmosférico en las Islas Canarias. Servicio Meteorológico Nacional (INM), Serie A (memoria No. 26). 95 pp.Google Scholar
  14. Giambelluca TW, Diaz HF, Luke MSA (2008) Secular temperature changes in Hawai’i. Geophys Res Lett 35:L12702. doi: 10.1029/2008GL034377 CrossRefGoogle Scholar
  15. Guttman NB, Quayle RG (1990) A review of cooperative temperature data validation. J Atmos Oceanic Technol 7:334–339CrossRefGoogle Scholar
  16. Hu Y, Fu Q (2007) Observed poleward expansion on the Hadley circulation since 1979. Atmos Chem Phys 7:9367–9384CrossRefGoogle Scholar
  17. Jensen MP, Vogelmann AM, Collins WD, Zhang GJ, Luke EP (2008) Investigation of regional and seasonal variations in marine boundary layer cloud properties from MODIS observations. J Climate 21:4955–4973CrossRefGoogle Scholar
  18. Jones PD (1994) Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J Climate 7:1794–1802CrossRefGoogle Scholar
  19. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  20. Jones P, Wigley T, Kelly P (1982) Variations in surface air temperatures: part 1. Northern hemisphere, 1881–1980. Mon Wea Rev 110(2):59–70CrossRefGoogle Scholar
  21. Jones PD, Parker DE, Osborn TJ, Briffa KR (2011) Global and hemispheric temperature anomalies –land and marine instrumental records. In trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, USA. doi: 10.3334/CDIAC/cli.002 Google Scholar
  22. Khaliq MN, Ouarda T (2007) On the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687CrossRefGoogle Scholar
  23. Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Climate 6:1588–1606CrossRefGoogle Scholar
  24. Levene H (1960) Robust tests for equality of variances. In: Olkin I, Hotelling H et al. (eds) “Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling”, Stanford University Press. 278–292 pp.Google Scholar
  25. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29(10):1421. doi: 10.1029/2002GL014910 CrossRefGoogle Scholar
  26. Loope LL, Giambelluca TW (1998) Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii. Clim Change 39(2–3):503–517CrossRefGoogle Scholar
  27. Marzol MV (2001) El Clima. In: Fernández-Palacios JM, Martín-Esquivel JL (eds) “Naturaleza de las Islas Canarias. Ecología y conservación”. Publicaciones Turquesa, S/C de Tenerife, pp 87–93Google Scholar
  28. Oñate JJ, Pou A (1996) Temperature variations in Spain since 1901: a preliminary analysis. Int J Climatol 16:805–815CrossRefGoogle Scholar
  29. Osborn TK, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series. Dendrochronologia 15:89–99Google Scholar
  30. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi: 10.1029/2008GL034026 CrossRefGoogle Scholar
  31. Pepin NC, Norris JR (2005) An examination of the differences between surface and free-air temperature trend at high-elevation sites: relationships with cloud cover, snow cover, and wind. J Geophys Res 110:D24112. doi: 10.1029/2005JD006150 CrossRefGoogle Scholar
  32. Peterson TC, Vose R, Schmoyer R, Razuvaev V (1998) Global historical climatology network (GHCN) quality control of monthly temperature data. Int J Climatol 18:1169–1179CrossRefGoogle Scholar
  33. Petit J, Prudent G (2008) Climate change and biodiversity in the European union overseas entities. UICN, Brussels, p 178Google Scholar
  34. Pettitt AN (1979) A nonparametric approach to the change-point problem. Appl Statist 28:126–135CrossRefGoogle Scholar
  35. Reeves J, Chen J, Wang XL, Lund R, Lu Q (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteor Climatol 46:900–915CrossRefGoogle Scholar
  36. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  37. Sanroma E, Palle E, Sánchez-Lorenzo A (2010) Long-term changes in insolation and temperatures at different altitudes. Environ Res Lett 5:1–6CrossRefGoogle Scholar
  38. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337–7356CrossRefGoogle Scholar
  39. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24Google Scholar
  40. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRefGoogle Scholar
  41. Sneyers R (1975) Sobre el análisis estadístico de las series de observaciones. OMM, Nota técnica 143. OMM-Nº 415. Geneva.Google Scholar
  42. Sperling FN, Wasingthon R, Wittaker RJ (2004) Future climate change of the subtropical north Atlantic: implications for the cloud forests of Tenerife. Clim Change 65(1–2):103–123CrossRefGoogle Scholar
  43. Stepanek P (2007) AnClim—software for time series analysis (for Windows). Dept. of Geography, Fac. of Natural Sciences, Masaryk University, Brno. 1.47 MB.Google Scholar
  44. Stone DA, Weaver AJ (2002) Daily maximum and minimum temperature trends in a climate model. Geophys Res Lett 29(9):1356, GL014556CrossRefGoogle Scholar
  45. Stone D, Weaver A (2003) Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Clim Dynamics 20:435–445Google Scholar
  46. Stott PA, Huntingford C, Jones CD, Kettleborough JA (2008) Observed climate change constrains the likelihood of extreme future global warming. Tellus 60(1):76–81CrossRefGoogle Scholar
  47. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) “Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change”. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  48. Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res 67:26–37Google Scholar
  49. Venema VKC, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2011) Benchmarking monthly homogenization algorithms. Climate of the Past Discussions 7(4):2655–2718CrossRefGoogle Scholar
  50. Weber RO, Talkner P, Stefanicki G (1994) Asymmetric diurnal temperature change in the alpine region. Geophy Res Lett 21(8):673–676CrossRefGoogle Scholar
  51. Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi: 10.1029/2008JD011470 CrossRefGoogle Scholar
  52. WMO (1996) Climatological normals (CLINO) for the period 19611990. Geneva, Pub. 847, 768 pp.Google Scholar
  53. Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theor Appl Climatol 75:15–27Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • José L. Martín
    • 1
    Email author
  • José Bethencourt
    • 2
  • Emilio Cuevas-Agulló
    • 3
  1. 1.Canary Islands Agency for Climate Change and Sustainable DevelopmentObservatory of Sustainable DevelopmentSanta Cruz de TenerifeSpain
  2. 2.Canary Islands Agency for Climate Change and Sustainable DevelopmentSanta Cruz de TenerifeSpain
  3. 3.Izaña Atmospheric Research Centre (AEMET)SC de TenerifeSpain

Personalised recommendations