Advertisement

Climatic Change

, Volume 114, Issue 1, pp 101–120 | Cite as

The Imaclim-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight

  • Henri Waisman
  • Céline Guivarch
  • Fabio Grazi
  • Jean Charles Hourcade
Article

Abstract

This paper analyzes the transition costs of moving towards a low carbon society when the second-best nature of the economy is accounted for. We emphasize the consequences on mitigation costs of considering the interplay between a) technical systems inertia, including slow infrastructure turnover in transportation and construction; and b) imperfect foresight influencing investment decisions. To this end, the hybrid general equilibrium modeling framework Imaclim-R is employed as it allows for transitory partial adjustments of the economy and captures their impact on the dynamics of economic growth. The modeling exercise quantitatively emphasizes the a) specific risks that the interplay between inertia and imperfect foresight leads to high macroeconomic costs of carbon abatement measures; b) opportunities of co-benefits from climate policies permitted by the correction of sub-optimalities in the reference scenarios. The article draws insights for the framing of future climate architectures by studying the role of measures that act complementarily to carbon pricing in the transport sector. In particular, reallocating public investment towards low-carbon transport infrastructure significantly reduces the overall macroeconomic costs of a given GHG stabilization target and even creates the room for long-term net economic benefits from climate policies.

Keywords

Technical Change Climate Policy Carbon Price Reference Scenario Freight Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2011_387_MOESM1_ESM.docx (267 kb)
ESM 1 (DOCX 266 kb)

References

  1. Ahmad S (1966) On the theory of induced innovation. Econ J 76:344–357CrossRefGoogle Scholar
  2. Armington PS (1969) A Theory of Demand for Products Distinguished by Place of Production. IMF, International Monetary Fund Staff Papers 16:170–201Google Scholar
  3. Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290CrossRefGoogle Scholar
  4. Barker T and Scrieciu SS (2010) Low stabilization within a “New Economics” macro-econometric framework: insights from E3MG. In: Edenhofer O, Knopf B, Leimbach M, Bauer N (Eds) The economics of low stabilization. Energy J 31:( Special Issue 1), in pressGoogle Scholar
  5. Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R, Davidson OR, Fisher BS, Gupta S, Halsnæs K, Heij GJ, Kahn Ribeiro S, Kobayashi S, Levine MD, Martino DL, Masera O, Metz B, Meyer LA, Nabuurs G-J, Najam A, Nakicenovic N, Rogner HH, Roy J, Sathaye J, Schock R, Shukla P, Sims REH, Smith P, Tirpak DA, Urge-Vorsatz D, Zhou D (2007) Technical summary. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  6. Bosetti V, Carraro C, Massetti E, Sgobbi A, Tavoni M (2009) Optimal energy investment and R&D strategies to stabilise greenhouse gas atmospheric concentrations. Resour Energy Econ 31–2:123–137CrossRefGoogle Scholar
  7. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. CambridgeUniversity Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  8. Corrado C, Mattey J (1997) Capacity utilization. J Econ Perspect 11(1):151–167CrossRefGoogle Scholar
  9. Edenhofer O, Carraro C and Hourcade JC (2010a). The rationale of modeling comparison exercises for climate policy. In preparation for Climatic Change, this issueGoogle Scholar
  10. Edenhofer O, Knopf B, Barker T, Baumstark L, Bellevrat E, Chateau B, Criqui P, Isaac M, Kitous A, Kypreos S, Leimbach M, Lessmann K, Magné B, Scrieciu S, Turton H, and van Vuuren D (2010b) The economics of low stabilization: model comparison of mitigation strategies and costs. In: Edenhofer O, Knopf B, Leimbach M, Bauer N (Eds) The economics of low stabilization. Energy J 31:(Special Issue 1) 11–48Google Scholar
  11. Edmonds JA, Pitcher HM, Sands RD (2004) Second generation model 2004: an overview. Pacific Northwest National Laboratory. http://www.epa.gov/air/pdfs/SGMoverview.pdf
  12. Grazi F, van den Bergh JCJM, van Ommeren JN (2008) An empirical analysis of urban form, transport, and global warming. Energy J 29(4):97–107Google Scholar
  13. Greene D, Hopson J, Li J (2006) Have we run out of oil yet? Oil peaking analysis from an optimist’s perspective. Energ Policy 34(5):515–531CrossRefGoogle Scholar
  14. Greening L, Greene D, Difiglio C (2000) Energy efficiency and consumption – the rebound effect – a survey. Energ Policy 28(6):389–401CrossRefGoogle Scholar
  15. Guivarch C, Crassous R, Sassi O, Hallegatte S (2010) The costs of climate policies in a second best world with labour market imperfections. Climate Policy 11:768–788Google Scholar
  16. Hourcade JC, Jaccard M, Bataille C et Ghersi F (2006). Hybrid modeling : new answers to old challenges. In: Hybrid modeling of energy-environment policies: reconciling bottom-up and top- down. Energy J (Special Issue 2): 1–12Google Scholar
  17. IEA (2006) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, ParisGoogle Scholar
  18. IEA (2007) World energy outlook 2007. IEA/OECD, ParisGoogle Scholar
  19. IPCC (2007) Summary for policymakers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. CambridgeUniversity Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  20. Jaccard M, Failing L, Berry T (1997) From equipment to infrastructure: community energy management and greenhouse gas emission reduction. Energ Policy 25(13):1065–1074CrossRefGoogle Scholar
  21. Jakob M, Luderer G, Steckel J, Bosetti V, Tavoni M, and Waisman H (2010) Time to act now? Assessing the costs of delaying climate measures and benefits of early action, in preparation for Climatic Change, this issueGoogle Scholar
  22. Johansen L (1959) Substitution versus fixed production coefficients in the theory of growth: a synthesis. Econometrica 27:157–176CrossRefGoogle Scholar
  23. Kverndokk S, Rosendahl KE (2007) Climate policies and learning by doing: impacts and timing of technology subsidies. Resour Energy Econ 29:58–82CrossRefGoogle Scholar
  24. LEPII-EPE (2006) The POLES model, Institut d’Économie et de Politique de l’Énergie, Grenoble, France, 12 pp. (http://webu2.upmf-grenoble.fr/iepe/textes/POLES12pJan06.pdf)
  25. Luderer G, Bosetti V, Jakob M, Steckel J, Waisman H and Edenhofer O (2010) The economics of GHG emissions reductions – results and insights from the RECIPE model intercomparison. In preparation for Climatic Change, this issueGoogle Scholar
  26. Luderer G, DeCian E, Hourcade J-C, Leimbach M, Waisman H, Edenhofer O (2011) On the regional distribution of mitigation costs in a global cap-and-trade regime. Climatic Change, this issueGoogle Scholar
  27. Malcolm G, Truong P (1999) The process of incorporating energy data into GTAP, Draft GTAP technical paper, center for global trade analysis. Purdue University, WestLafayette, Indiana, USAGoogle Scholar
  28. Paltsev S, Reilly J, Jacoby H, Eckaux R, McFarland J, Sarofim M, Asasoorian M, Babiker M (2005) The MIT Emissions Prediction and Policy Analysis (EPPA) model: version 4, report no. 125. Joint program on the science and policy of global change, MIT, CambridgeGoogle Scholar
  29. Rehrl T, Friedrich R (2006) Modeling long-term oil price and extraction with a Hubbert approach: the LOPEX model. Energ Policy 34(15):2413–2428CrossRefGoogle Scholar
  30. Rogner HH (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262CrossRefGoogle Scholar
  31. Rozenberg J, Hallegatte S, Vogt-Schilb A, Sassi O, Guivarch C, Waisman H, Hourcade J-C (2010) Climate change and energy security: climate policies as a hedge against the uncertainty on future oil supply. Climatic Change 101(3–4):663–668Google Scholar
  32. Sands RD, Miller S and Kim MK (2005) The second generation model: comparison of SGM and GTAP approaches to data development, Pacific Northwest National Labouratory, PNNL-15467, 2005Google Scholar
  33. Sassi O, Crassous R, Hourcade JC, Gitz V, Waisman H, Guivarch C (2010) Imaclim-R: a modeling framework to simulate sustainable development pathways. Int J Global Environmental Issues 10(1/2):5–24CrossRefGoogle Scholar
  34. Solow R (1956) A Contribution to the theory of economic growth. Q J Econ 70(1):65–94CrossRefGoogle Scholar
  35. United States Geological Survey (USGS) (2000) World petroleum assessment 2000. USGS, WashingtonGoogle Scholar
  36. Wiser R, Yang Z, Hand M, Hohmeyer O, Infield D, Jensen PH, Nikolaev V, O’Malley M, Sinden G, Zervos A (2011) Wind energy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Henri Waisman
    • 1
  • Céline Guivarch
    • 1
    • 2
  • Fabio Grazi
    • 1
    • 3
  • Jean Charles Hourcade
    • 1
  1. 1.Centre International de Recherche sur l’Environnement et le Développement (CIRED, ParisTech/ENPC & CNRS/EHESS)Nogent sur Marne CedexFrance
  2. 2.École Nationale des Ponts et Chaussées—ParisTechMarne la Vallée Cedex 2France
  3. 3.Agence Française de Développement (AFD), Division of Economic ResearchParisFrance

Personalised recommendations