Climatic Change

, Volume 112, Issue 3–4, pp 547–568 | Cite as

What are robust strategies in the face of uncertain climate threshold responses?

Robust climate strategies


We use an integrated assessment model of climate change to analyze how alternative decision-making criteria affect preferred investments into greenhouse gas mitigation, the distribution of outcomes, the robustness of the strategies, and the economic value of information. We define robustness as trading a small decrease in a strategy’s expected performance for a significant increase in a strategy’s performance in the worst cases. Specifically, we modify the Dynamic Integrated model of Climate and the Economy (DICE-07) to include a simple representation of a climate threshold response, parametric uncertainty, structural uncertainty, learning, and different decision-making criteria. Economic analyses of climate change strategies typically adopt the expected utility maximization (EUM) framework. We compare EUM with two decision criteria adopted from the finance literature, namely Limited Degree of Confidence (LDC) and Safety First (SF). Both criteria increase the relative weight of the performance under the worst-case scenarios compared to EUM. We show that the LDC and SF criteria provide a computationally feasible foundation for identifying greenhouse gas mitigation strategies that may prove more robust than those identified by the EUM criterion. More robust strategies show higher near-term investments in emissions abatement. Reducing uncertainty has a higher economic value of information for the LDC and SF decision criteria than for EUM.

Supplementary material

10584_2011_377_MOESM1_ESM.pdf (84 kb)
(PDF 83.5 KB)


  1. Aaheim H, Bretteville C (2001) Decision-making frameworks for climate policy under uncertainty. Working paper 2001:02, CICERO, Oslo, NorwayGoogle Scholar
  2. Ackerman F, DeCanio SJ, Howarth RB, Sheeran K (2009) Limitations of integrated assessment models of climate change. Clim Change 95(3–4):297–315. doi:10.1007/s10584-009-9570-x CrossRefGoogle Scholar
  3. Alexander S, Coleman T, Li Y (2006) Minimizing CVaR and VaR for a portfolio of derivatives. J Bank Financ 30:583–605. doi:10.1016/j.jbankfin.2005.04.012 CrossRefGoogle Scholar
  4. Alley RB, Marotzke J, Nordhaus W, Overpeck J, Pielke R, Pierrehumbert R, Rhines P, Stocker T, Talley L, Wallace JM (2002) Abrupt climate change: inevitable surprises. National Academy Press, Wasington, D.C.Google Scholar
  5. Andersson F, Mausser H, Rosen D, Uryasev S (2001) Credit risk optimization with conditional value-at-risk criterion. Math Program 89:273–291. doi:10.1007/PL00011399 CrossRefGoogle Scholar
  6. Andronova NG, Schlesinger ME (2001) Objective estimate of the probability density function for climate sensitivity. J Geophys Res 106:22605–22612. doi:10.1029/2000JD000259 CrossRefGoogle Scholar
  7. Arrow KJ (2009) A note on uncertainty and discounting in models of economic growth. J Risk Uncertain 38(2):87–94CrossRefGoogle Scholar
  8. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, Kundzewicz Z, Liu J, Lohmann U, Manning M, Matsuno T, Menne B, Metz B, Mirza M, Nicholls N, Nurse L, Pachauri R, Palutikof J, Parry M, Qin D, Ravindranath N, Reisinger A, Ren J, Riahi K, Rosenzweig C, Rusticucci M, Schneider S, Sokona Y, Solomon S, Stott P, Stouffer R, Sugiyama T, Swart R, Tirpak D, Vogel C, Yohe G (eds) (2008) IPCC, 2007: climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  9. Borsuk ME, Tomassini L (2005) Uncertainty, imprecision and the precautionary principle in climate change assessment. Water Sci Technol 52(6):213–225Google Scholar
  10. Bradford DF (1999) On the uses of benefit-cost reasoning in choosing policy toward global climate change. In: Portney PR, Weyant JP (eds) Discounting and intergenerational equity. RFF Press, Washington, DC, pp 37–44Google Scholar
  11. Bretteville Froyn C (2005) Decision criteria, scientific uncertainty, and the global warming controversy. Mitig Adapt Strategies Glob Chang 10:183–211. doi:10.1007/s11027-005-3782-9 CrossRefGoogle Scholar
  12. Budescu DV, Kuhn KM, Johnson T (2002) Modeling certainty equivalents for imprecise gambles. Org Behav Human Decis Process 88:748–768. doi:10.1016/S0749-5978(02)00014-6 CrossRefGoogle Scholar
  13. Du N, Budescu DV (2005) The effects of imprecise probabilities and outcomes in evaluating investment options. Manage Sci 51:1791–1803. doi:10.1287/mnsc.1050.0428 CrossRefGoogle Scholar
  14. Ellsberg D (1961) Risk, ambiguity, and the Savage axioms. Q J Econ 75(4):643–669CrossRefGoogle Scholar
  15. Ellsberg D (2001) Risk, ambiguity and decision. Garland, New YorkGoogle Scholar
  16. EPA (2010) Technical support document: social cost of carbon for regulatory impact analysis under executive order 12866. Interagency Working Group on Social Cost of Carbon, United States Government. Accessed 17 June 2011
  17. Fortin I, Fuss S, Hlouskova J, Khabarov N, Obersteiner M, Szolgayova J (2007) An integrated CVaR and real options approach to investments in the energy sector. Economic Series 209, Institute for Advanced Studies, ViennaGoogle Scholar
  18. Goes M, Keller K, Tuana N (2011) The economics (or lack thereof) of aerosol geoengineering. Clim Change. doi:10.1007/s10584-010-9961-z Google Scholar
  19. Hall J, Fu G, Lawry J (2007) Imprecise probabilities of climate change: aggregation of fuzzy scenarios and model uncertainties. Clim Change 81(3–4):265–281. doi:10.1007/s10584-006-9175-6 CrossRefGoogle Scholar
  20. Hurwicz L (1951) Optimality criteria for decision-making under ignorance. Cowles Commission Discussion Paper, Statistics, No. 370Google Scholar
  21. Keith DW (1996) When is it appropriate to combine expert judgments? Clim Change 33(2):139–143. doi:10.1007/BF00140244 CrossRefGoogle Scholar
  22. Keller K, McInerney D (2008) The dynamics of learning about a climate threshold. Clim Dyn 30(2–3):321–332CrossRefGoogle Scholar
  23. Keller K, Tan K, Morel F, Bradford D (2000) Preserving the ocean circulation: implications for climate. Clim Change 47:17–43. doi:10.1023/A:1005624909182 CrossRefGoogle Scholar
  24. Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manage 48:723–741. doi:10.1016/j.jeem.2003.10.003 CrossRefGoogle Scholar
  25. Keller K, Deutsch C, Hall MG, Bradford DF (2007a) Early detection of changes in the North Atlantic meridional overturning circulation: implications for the design of ocean observation systems. J Climate 20:145–157. doi:10.1175/JCLI3993.1 CrossRefGoogle Scholar
  26. Keller K, Kim SR, Baehr J, Bradford D, Oppenheimer M (2007b) Human-induced climate change. In: Schlesinger ME (ed) What is the economic value of information about climate thresholds? Harvard University Press, Cambridge, UK, pp 343–354Google Scholar
  27. Keller K, McInerney D, Bradford DF (2008a) Carbon dioxide sequestration: how much and when? Clim Change 88:267–291. doi:10.1007/s10584-008-941 CrossRefGoogle Scholar
  28. Keller K, Schlesinger M, Yohe G (2008b) Managing the risks of climate thresholds: uncertainties and information needs. Clim Change 91:5–10CrossRefGoogle Scholar
  29. Knutti R, Hegerl G (2008) The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat Geosci 1:735–743. doi:10.1038/ngeo337 CrossRefGoogle Scholar
  30. Kriegler E, Held H (2005) Utilizing belief functions for the estimation of future climate change. Int J Approx Reason 39(2–3):185–209. doi:10.1016/j.ijar.2004.10.005 CrossRefGoogle Scholar
  31. Krokhmal P, Palmquist J, Uryasev S (2002) Portfolio optimization with conditional value-at-risk objective and constraints. J Risk 4(2):11–27Google Scholar
  32. Lange A (2003) Climate change and the irreversibility effect combining expected utility and maximin. Environ Resour Econ 25(4):417–434. doi:10.1023/A:1025054716419 CrossRefGoogle Scholar
  33. Larsen N, Mausser H, Uryasev S (2002) Algorithms for optimization of value-at-risk. In: Pardalos P, Tsitsiringos V (eds) Financial engineering, E-commerce, and supply chain. Kluwer Academic Publisher, Boston, pp 129–157Google Scholar
  34. Latif M, Roeckner E, Mikolajewski U, R V (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim 13:1809–1813. doi:10.1175/1520-0442(2000)013<1809:L>2.0.CO;2 CrossRefGoogle Scholar
  35. Lempert R, Sanstad A, Schlesinger M (2006) Multiple equilibria in a stochastic implementation of DICE with abrupt climate change. Energy Econ 28:677–689. doi:10.1016/j.eneco.2006.05.013 CrossRefGoogle Scholar
  36. Lempert RJ (2002) A new decision sciences for complex systems. Proc Natl Acad Sci USA 99:7309–7313CrossRefGoogle Scholar
  37. Lempert RJ, Collins MT (2007) Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Anal 27(4):1009–1026. doi:10.1111/j.1539-6924.2007.00940.x CrossRefGoogle Scholar
  38. Lempert RJ, Popper SW, Bankes SC (2003) Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. Tech. rep., RAND MR-1626-RPCGoogle Scholar
  39. Link PM, Tol RSJ (2004) Possible economic impacts of a shutdown of the thermohaline circulation: an application of fund. Port Econ J 3:99–114. doi:10.1007/s10258-004-0033-z CrossRefGoogle Scholar
  40. Liu J, Men C, Cabrera V, Uryasev S, Fraisse C (2008) Optimizing crop insurance under climate variability. J Appl Meteorol Clim 47:2572–2580. doi:10.1175/2007JAMC1490.1 CrossRefGoogle Scholar
  41. McInerney D, Keller K (2008) Economically optimal risk reduction strategies in the face of uncertain climate thresholds. Clim Change 91:29–41. doi:10.1007/s10584–006–9137-z CrossRefGoogle Scholar
  42. Morgan G, Dowlatabadi H, Henrion M, Keith D, Lempert R, McBrid S, Small M, Wilbanks T (2009) U.S. CCSP Synthesis and Assessment Product 5.2, Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. Tech. rep., National Oceanic and Atmospheric AdministrationGoogle Scholar
  43. Nordhaus W (1992) An optimal transition path for controlling greenhouse gases. Science 258:1315–1319CrossRefGoogle Scholar
  44. Nordhaus W (2007a) The challenge of global warming: Economic models and environmental policy. Accessed 2 May 2007, model version:
  45. Nordhaus W (2007b) A review of the Stern review on the economics of climate change. J Econ Lit 45(3):686–702. doi:10.1257/jel.45.3.686 CrossRefGoogle Scholar
  46. Nordhaus WD (1994) Managing the global commons. The MIT press, Cambridge, MassachusettsGoogle Scholar
  47. Nordhaus WD (2008) A question of balance: economic modeling of global warming. Yale PressGoogle Scholar
  48. OMB (2003) Circular A-4: regulatory analysis. Office of Management and Budget, Accessed 17 June 2011
  49. Oppenheimer M, O’Neill BC, Webster M (2008) Negative learning. Clim Change 89(1–2):155–172. doi:10.1007/s10584-008-9405-1 CrossRefGoogle Scholar
  50. Peterson GD, Carpenter SR, Brock WA (2003) Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology 84(6):1403–1411CrossRefGoogle Scholar
  51. Popp D (2004) ENTICE: endogenous technological change in the DICE model of global warming. J Environ Econ Manage 48:742–768. doi:10.1016/j.jeem.2003.09.002 CrossRefGoogle Scholar
  52. Quaranta A, Zaffaroni A (2008) Robust optimization of conditional value at risk and portfolio selection. J Bank Financ 32:2046–2056. doi:10.1016/j.jbankfin.2007.12.025 CrossRefGoogle Scholar
  53. Quiggin J (2008) Economists and uncertainty. In: Bammer G, Smithson M (eds) Uncertainty and risk: multidisciplinary perspectives, earthscan risk in society series, London, pp 195–204Google Scholar
  54. Ramsey F (1928) A mathematical theory of saving. Econ J 38(152):543–559CrossRefGoogle Scholar
  55. Rawls J (1971) A theory of justice. Harward University PressGoogle Scholar
  56. Ricciuto DM, Davis KJ, Keller K (2008) A Bayesian synthesis inversion of carbon cycle observations: how do observations reduce uncertainties about future sinks? Glob Biogeochem Cycles 22(GB2030). doi:10.1029/2006GB002908
  57. Schienke E, Baum S, Tuana N, Davis K, Keller K (2011) Intrinsic ethics regarding integrated assessment models for climate management. Sci Eng Ethics 17(3):503–523. doi:10.1007/s11948-010-9209-3 Google Scholar
  58. Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza C, Oppenheimer M, Pittock A, Rahman A, Smith J, Suarez A, Yamin F, Corfee-Morlot J, Finkel A, Füssel HM, Keller K, MacMynowski D, Mastrandrea MD, Todorov A, Sukumar R, Ypersele JPv, Zillman J (2007) Assessing key vulnerabilities and the risk from climate change. Cambridge University Press, Cambridge, UK, pp 779–810Google Scholar
  59. Stern N (2008) The economics of climate change. Am Econ Rev 98(2):1–37. doi:10.1257/aer.98.2.1 CrossRefGoogle Scholar
  60. Stocker T, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388:862–865CrossRefGoogle Scholar
  61. Tol R (1994) The damage costs of climate change: a note on tangibles and intangibles, applied to DICE. Energy Policy 22(5):436–438CrossRefGoogle Scholar
  62. Tol R (2003) Is the uncertainty about climate change too large for expected cost-benefit analysis? Clim Change 56(3):265–289. doi:10.1023/A:1021753906949 CrossRefGoogle Scholar
  63. Urban NM, Keller K (2009) Complementary observational constraints on climate sensitivity. Geophys Res Lett 36(L04708). doi:10.1029/2008GL036457 Google Scholar
  64. Urban NM, Keller K (2010) Probabilistic hindcasts and projections of the coupled climate, carbon cycle, and Atlantic meridional overturning circulation systems: a Bayesian fusion of century-scale observations with a simple model. Tellus A 62(5):737–750. doi:10.1111/j.1600-0870.2010.00471.x Google Scholar
  65. Weitzman ML (2001) Gamma discounting. Am Econ Rev 91(1):260–271CrossRefGoogle Scholar
  66. Welsch H (1995) Greenhouse-gas abatement under ambiguity. Energy Econ. 17(2):91–100. doi:10.1016/0140-9883(95)00010-R CrossRefGoogle Scholar
  67. Weyant JP (2009) A perspective on integrated assessment. Clim Change 95(3-4):317–323. doi:10.1007/s10584-009-9612-4 CrossRefGoogle Scholar
  68. Zickfeld K, Bruckner T (2008) Reducing the risk of atlantic thermohaline circulation collapse: Sensitivity analysis of emissions corridors. Clim Change 91(3–4):291–315. doi:10.1007/s10584-008-9467-0 CrossRefGoogle Scholar
  69. Zickfeld K, Levermann A, Morgan M, Kuhlbrodt T, Rahmstorf S, Keith D (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82:235–265. doi:10.1007/s10584-007-9246-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of the Geophysical SciencesUniversity of ChicagoChicagoUSA
  2. 2.Frederick S.Pardee Center for Longer Range Global Policy and the Future Human ConditionRAND CorporationSanta MonicaUSA
  3. 3.Department of Geosciences and Earth and Environmental Systems InstitutePenn StateUniversity ParkUSA

Personalised recommendations