Advertisement

Climatic Change

, Volume 113, Issue 3–4, pp 767–785 | Cite as

Selective drought-induced decline of pine species in southeastern Spain

  • Raúl Sánchez-SalgueroEmail author
  • Rafael M. Navarro-Cerrillo
  • J. Julio Camarero
  • Ángel Fernández-Cancio
Article

Abstract

The negative impacts of severe drought on the growth and vigor of tree species and their relationship with forest decline have not been properly evaluated taking into account the differential responses to such stress of trees, sites and species. We evaluated these responses by quantifying the changes in radial growth of plantations of four pine species (Pinus sylvestris, Pinus nigra, Pinus pinaster, Pinus halepensis) which showed distinct decline and defoliation levels in southeastern Spain. We used dendrochronological methods, defoliation records, linear mixed models of basal area increment and dynamic factor analysis to quantify the responses of trees at the species and individual scales to site conditions and drought stress. In the region a temperature rise and a decrease in spring precipitation have led to drier conditions during the late twentieth century characterized by severe droughts in the 1990s and 2000s. As expected, the defoliation levels and the reductions in basal area increment were higher in those species more vulnerable to drought-induced xylem embolism (P. sylvestris) than in those more resistant (P. halepensis). Species adapted to xeric conditions but with high growth rates, such as P. pinaster, were also vulnerable to drought-induced decline. The reduction in basal area increment and the defoliation events occurred after consecutive severe droughts. A decrease in spring precipitation, which is the main driver of radial growth, is the most plausible cause of recent forest decline. The sharp growth reduction and widespread defoliation of the most affected pine plantations of Scots pine make their future persistence in drought-prone sites unlikely under the forecasted warmer and drier conditions.

Keywords

Drought Stress Basal Area Increment Spring Precipitation Crown Height Forest Decline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the support of Junta de Andalucía, project GESBOME (P06-RNM-1890), project INTERBOS (CGL2008-04503-CO3-02) and a FPU grant (AP2007-04747, MCI, Spain) to the first author. We thank J. Bautista and A. Herrero for their help in the field and the support of Natural Park of Sierra de Baza and EGMASA. J.J. Camarero thanks ARAID and collaborative efforts within Globimed network. We thank R. Calama for his help with statistical analyses. We also thank Dr. S. Donner and three anonymous reviewers for their constructive comments.

Supplementary material

10584_2011_372_MOESM1_ESM.doc (445 kb)
ESM 1 (DOC 445 kb)

References

  1. Alavi G (1996) Radial stem growth of Picea abies in relation to spatial variation in soil moisture conditions. Scand J For Res 11:209–219CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  3. Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:804–815Google Scholar
  4. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343CrossRefGoogle Scholar
  5. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  6. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:1–21CrossRefGoogle Scholar
  7. Borghetti MS, Cinnirella S, Magnani F, Saracino A (1998) Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12:187–195Google Scholar
  8. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. Springer, Heidelberg, GermanyGoogle Scholar
  10. Camarero JJ, Lloret F, Corcuera L, Peñuelas J, Gil-Pelegrín, E (2004) Cambio global y decaimiento del bosque. In: Ecología del Bosque Mediterráneo en un Mundo Cambiante (ed Valladares F), pp. 397–423. Ministerio de Medio Ambiente, MadridGoogle Scholar
  11. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480CrossRefGoogle Scholar
  12. Cook ER (1985) A time series analysis approach to tree-ring standardization. University of Arizona, Tucson, DS ThesisGoogle Scholar
  13. De Luis M, González-Hidalgo JS, Longares LA, Štepánek P (2009) Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. Int J Climatol 29:1312–1323CrossRefGoogle Scholar
  14. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333CrossRefGoogle Scholar
  15. Eilmann B, Zwifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020CrossRefGoogle Scholar
  16. Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771CrossRefGoogle Scholar
  17. Frich P, Alexander LV, Della-Marta P, Gleason P, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  18. Fritts HC (1976) Tree Rings and Climate. Academic, New YorkGoogle Scholar
  19. Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-Induced Multifactor Decline of Scots Pine in The Pyrenees and Potential Vegetation Change by the Expansion of Co-ocurring Oak species. Ecosystems 13:978–991CrossRefGoogle Scholar
  20. Grissino-Mayer HD (2001) Evaluating crossdating, accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221Google Scholar
  21. Grove AT, Rackham O (2001) The Nature of Mediterranean Europe: an Ecological History. Yale University Press, New HavenGoogle Scholar
  22. Gutiérrez E (1989) Dendroclimatological study of Pinus sylvestris L. in southern Catalonia (Spain). Tree-Ring Bull 49:1–9Google Scholar
  23. Helama S, Salminen H, Timonen M, Varmola M (2008) Dendroclimatological analysis of seeded and thinned Scots pine (Pinus sylvestris L.) stands at the coniferous timberline. New Forests 35:267–284CrossRefGoogle Scholar
  24. Heikkilä J, Nevalainen S, Tokola T (2002) Estimating defoliation in boreal coniferous forest by combining Landsat TM, aerial photographs and field data. For Ecol Manag 158:9–23CrossRefGoogle Scholar
  25. Hernández-Clemente R, Navarro-Cerrillo RM, Suárez L, Morales F, Zarco-Tejada P (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115:2360–2375CrossRefGoogle Scholar
  26. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:68–78Google Scholar
  27. Holmes RL (2001) Dendrochronology Program Library. Laboratory of Tree-Ring Research, University of Arizona, TucsonGoogle Scholar
  28. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174CrossRefGoogle Scholar
  29. Klein T, Cohen S, Yakir D (2011) Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol 31:637–648CrossRefGoogle Scholar
  30. Linares JC, Camarero JJ, Carreira JA (2009) Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Glob Ecol Biogeogr 18:485–497CrossRefGoogle Scholar
  31. Linares JC, Camarero JJ, Carreira JA (2010a) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecol 98:592–603CrossRefGoogle Scholar
  32. Linares JC, Delgado-Huertas A, Carreira JA (2010b) Climatic trends and different drought adaptive capacity and vulnerability in a mixed Abies pinsapo–Pinus halepensis forest. Clim Change 105:67–90CrossRefGoogle Scholar
  33. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  34. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS System for Mixed Models. SAS Inst, Cary, NCGoogle Scholar
  35. LUCDEME (2004) Ministerio de Medio Ambiente, Proyecto LUCDEME (Provincia de Almería-Baza) 1986–2004. Memorias y mapas de suelos E. 1:50.000. Madrid, SpainGoogle Scholar
  36. Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Clim Change 79:289–313CrossRefGoogle Scholar
  37. Martínez-Vilalta J, Lopez BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 14:2868–2881CrossRefGoogle Scholar
  38. Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161:247–256CrossRefGoogle Scholar
  39. Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae—a review. Plant Ecol 171:3–13CrossRefGoogle Scholar
  40. Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364CrossRefGoogle Scholar
  41. McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739CrossRefGoogle Scholar
  42. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  43. Montero G (1997) Breve descripción del proceso repoblador en España (1940–1995). Legno Celulosa Carta 4:35–42Google Scholar
  44. Montero G, Vallejo R, Ruiz-Peinado R (2007) Fototeca Forestal Española DGB-INIA. Ministerio de Medio Ambiente y Ministerio de Educación y Ciencia. http://www.inia.es/fototeca. Madrid, Spain
  45. Navarro-Cerrillo RM, Varo MA, Lanjeri S, Hernández Clemente R (2007) Cartografía de defoliación en los pinares de pino silvestre (Pinus sylvestris L.) y pino salgareño (Pinus nigra Arn.) en la Sierra de los Filabres. Ecosistemas 16:163–171Google Scholar
  46. Oliveras I, Martínez-Vilalta J, Jimenez-Ortiz T, Lledó MJ, Escarré A, Piñol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol 169:131–141CrossRefGoogle Scholar
  47. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484CrossRefGoogle Scholar
  48. Pasho E, Camarero JJ, De Luis M, Vicente-Serrano SM (2011) Spatial variability in large-scale and regional atmospheric drivers of Pinus halepensis growth in eastern Spain. Agric For Meteorol 151:1106–1119CrossRefGoogle Scholar
  49. Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  50. Pemán J, Navarro-Cerrillo RM (1998) Repoblaciones Forestales. Universitat de Lleida, Lleida, SpainGoogle Scholar
  51. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora in Spain. Forest Sci 47:214–218Google Scholar
  52. Richardson DM (1998) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UKGoogle Scholar
  53. Richter K, Eckstein D, Holmes RL (1991) The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bull 51:1–13Google Scholar
  54. Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281CrossRefGoogle Scholar
  55. Sarris D, Christodoulakis D, Körner Ch (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13:1187–1200CrossRefGoogle Scholar
  56. Sarris D, Christodoulakis D, Körner Ch (2010) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223CrossRefGoogle Scholar
  57. Solberg S (2004) Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. For Pathol 34:93–104CrossRefGoogle Scholar
  58. Szeicz JM, MacDonald GM (1994) Age dependent tree-ring growth responses of subarctic white spruce to climate. Can J For Res 24:120–132CrossRefGoogle Scholar
  59. Tardif J, Camarero JJ, Ribas M, Gutierrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257CrossRefGoogle Scholar
  60. UN/ECE (1994) Manual on Methods and Criteria for Harmonised Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Third ed. Programme Co-ordinating Centres, Hamburg and PragueGoogle Scholar
  61. Vanderlinden K, Giráldez JV, Van Meirvenne M (2005) Soil water-holding capacity assessment in terms of the average annual water balance in Southern Spain. Vadose Zone J 4:317–328CrossRefGoogle Scholar
  62. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. J Climate 17:2335–2351CrossRefGoogle Scholar
  63. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meterol 23:201–213CrossRefGoogle Scholar
  64. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416CrossRefGoogle Scholar
  65. Zuur AF, Tuck ID, Bailey N (2003) Dynamic factor analysis to estimate common trends in fisheries time series. Can J Fish Aquat Sci 60:542–552CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raúl Sánchez-Salguero
    • 1
    • 2
    • 4
    Email author
  • Rafael M. Navarro-Cerrillo
    • 2
  • J. Julio Camarero
    • 3
  • Ángel Fernández-Cancio
    • 1
  1. 1.Centro de Investigación Forestal (CIFOR)- INIAMadridSpain
  2. 2.Depto. Ingeniería Forestal, Laboratorio de DendrocronologíaUniversidad de CórdobaCórdobaSpain
  3. 3.ARAID, Instituto Pirenaico de Ecología, CSICZaragozaSpain
  4. 4.Centro de Investigación Forestal (CIFOR)- I.N.I.AMinisterio de Ciencia e Innovación, Dpto. Ecología y Genética ForestalMadridSpain

Personalised recommendations