Climatic Change

, Volume 112, Issue 3–4, pp 569–583 | Cite as

Analysis of climate policy targets under uncertainty

  • Mort Webster
  • Andrei P. Sokolov
  • John M. Reilly
  • Chris E. Forest
  • Sergey Paltsev
  • Adam Schlosser
  • Chien Wang
  • David Kicklighter
  • Marcus Sarofim
  • Jerry Melillo
  • Ronald G. Prinn
  • Henry D. Jacoby
Article

Abstract

Although policymaking in response to the climate change threat is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions paths developed originally for a study by the U.S. Climate Change Science Program. The resulting uncertainty in temperature change and other impacts under these targets is used to illustrate three insights not obtainable from deterministic analyses: that the reduction of extreme temperature changes under emissions constraints is greater than the reduction in the median reduction; that the incremental gain from tighter constraints is not linear and depends on the target to be avoided; and that comparing median results across models can greatly understate the uncertainty in any single model.

Supplementary material

10584_2011_260_MOESM1_ESM.docx (253 kb)
ESM 1(DOCX 252 kb)

References

  1. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci 104:18866–18870. doi:10.1073/pnas.0702737104, published online before print October 25, 2007CrossRefGoogle Scholar
  2. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations, sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological and Environmental Research, Washington, DC, p 106Google Scholar
  3. Fisher BS, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-Ch, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, van Vuuren D, Warren R (2007) Issues related to mitigation in the long term context. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the inter-governmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  4. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, van Dorland R, Bodeker G, Boucher O, Collins WD, Conway TJ, Dlugokencky E, Elkins JW, Etheridge D, Foukal P, Fraser P, Geller M, Joos F, Keeling CD, Kinne S, Lassey K, Lohmann U, Manning AC, Montzka S, Oram D, O'Shaughnessy K, Piper S, Plattner G-K, Ponater M, Ramankutty N, Reid G, Rind D, Rosenlof K, Sausen R, Schwarzkopf D, Solanki SK, Stenchikov G, Stuber N, Takemura T, Textor C, Wang R, Weiss R, Whorf T (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, USAGoogle Scholar
  5. G8 Summit (2009) Chair’s summary, 10 July 2009. (www.guitalia2009.it/static/G8_Allegato/Chair_Summary,1.pdf).
  6. Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate changes as forecast by goddard institute for space studies three-dimensional model. J Geophys Res 93(D8):9341–9364. doi:10.1029/JD093iD08p09341 Google Scholar
  7. Huang J, Wang R, Prinn R, Cunnold D (2009) A semi-empirical representation of the temporal variation of total greenhouse gas levels expressed as equivalent levels of carbon dioxide. MIT JPSPGC, Report 174, 10 pp. (http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt174.pdf).
  8. Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner G-K, Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Climate 21:2651–2663CrossRefGoogle Scholar
  9. Kolstad CD (1996) Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J Environ Econ Manag 31:1–18CrossRefGoogle Scholar
  10. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  11. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Francois Lamarque J, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, RoseS, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, Pascal van Ypersele J, Zurek M, Birol F, Bosch P, Boucher O, Feddema J, Garg A, Gaye A, Ibarraran M, La Rovere E, Metz B, Nishioka S, Pitcher H, Shindell D, Shukla PR, Snidvongs A, Thorton P, Vilariño V (2007) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies, IPCC Expert Meeting Report, 19–21 September, 2007 Noordwijkerhout, The Netherlands, http://ipcc-data.org/docs/ar5scenarios/IPCC_Final_Draft_Meeting_Report_3May08.pdf.
  12. Moss RH, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds JA, Elgizouli I, Emori S, Lin E, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O'Neill B, Pichs R, Riahi K, Rose S, Runci PJ, Stouffer R, VanVuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (US)Google Scholar
  13. Nakicenovic N et al (2000) Special report on emissions scenarios, intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  14. Nordhaus W (2007) The challenge of global warming: economic models and environmental policy. NBER Working Paper 14832. (Available online at: http://nordhaus.econ.yale.edu/).
  15. Pielke R, Wigley T, Green C (2008) Dangerous assumptions. Nature 452:531–532. doi:10.1038/452531a CrossRefGoogle Scholar
  16. Prinn R, Paltsev S, Sokolov A, Sarofim M, Reilly J, Jacoby H (2011) Scenarios with MIT integrated global system model: significant global warming regardless of different approaches. Clim Chang 104(3–4):515–537. doi:10.1007/s10584-009-9792-y CrossRefGoogle Scholar
  17. Ramaswamy VO, Boucher J, Haigh D, Hauglustaine J, Haywood G, Myhre T, Nakajima GY, Shi S, Solomon R, Betts R, Charlson C, Chuang JS, Daniel A, Del Genio R, van Dorland J, Feichter J, Fuglestvedt PM, de Forster F, Ghan SJ, Jones A, Kiehl JT ,Koch D, Land C, Lean J, Lohmann U, Minschwaner K, Penner JE, Roberts DL, Rodhe H, Roelofs GJ, Rotstayn LD, Schneider TL, Schumann U, Schwartz SE, Schwarzkopf MD, Shine KP, Smith S, Stevenson DS, Stordal F, Tegen I, Zhang Y (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 881Google Scholar
  18. Rubinstein RY, Kroese DP (2008) Simulation and the Monte Carlo Method. John Wiley & Sons, HobokenGoogle Scholar
  19. Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza CHD, Oppenheimer M, Pittock AB, Rahman A, Smith JB, Suarez A, Yamni F (2007) Assessing key vulnerabilities and the risk form climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 779–810Google Scholar
  20. Sokolov AP, Schlosser CA, Dutkiewicz S, Paltsev S, Kicklighter DW, Jacoby HD, Prinn RG, Forest CE, Reilly J, Wang C, Felzer B, Sarofim MC, Scott J, Stone PH, Melillo JM, Cohen J (2005) The MIT Integrated Global System Model (IGSM) Version 2: model description and baseline evaluation, MIT JPSPGC, Report 124, 40 pp. (Available on line at: http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt124.pdf).
  21. Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW (2008) Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796. doi:10.1175/2008JCLI2038.1 CrossRefGoogle Scholar
  22. Sokolov AP, Stone PH, Forest CE, Prinn R, Sarofim MC, Webster M, Paltsev S, Schlosser CA, Kicklighter D, Dutkiewicz S, Reilly J, Wang C, Felzer B, Jacoby HD (2009) Probabilistic forecast for 21st century climate based on uncertainties in emissions (without policy) and climate parameters. J Clim 22:5175–5204CrossRefGoogle Scholar
  23. UN FCCC [United Nations Framework Convention on Climate Change], 1997: Bali Action Plan (FCCC/CP/2007/6 Add.1).Google Scholar
  24. United Nations (1992) Framework convention on climate change. Int Leg Mater 31:849–873Google Scholar
  25. Webster MD, Paltsev S, Parsons J, Reilly J, Jacoby H (2008a) Uncertainty in greenhouse emissions and costs of atmospheric stabilization, MIT JPSPGC, Report 165. (Available online at http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt165.pdf )
  26. Webster MD, Jakobovits L, Norton J (2008b) Learning about climate change and implications for near-term policy. Clim Chang 89(1–2):67–85CrossRefGoogle Scholar
  27. Wigley T, Clarke L, Edmonds J, Jacoby H, Paltsev S, Pitcher H, Reilly J, Richels R, Sarofim M, Smith S (2009) Uncertainties in climate stabilization. Clim Chang 97(1–2):85–121. doi:10.1007/s10584-009-9585-3 CrossRefGoogle Scholar
  28. Yohe G, Andronova N, Schlesinger M (2004) To hedge or not against an uncertain climate future? Science 306:416–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mort Webster
    • 1
    • 2
  • Andrei P. Sokolov
    • 1
  • John M. Reilly
    • 1
  • Chris E. Forest
    • 3
  • Sergey Paltsev
    • 1
  • Adam Schlosser
    • 1
  • Chien Wang
    • 1
  • David Kicklighter
    • 4
  • Marcus Sarofim
    • 5
  • Jerry Melillo
    • 4
  • Ronald G. Prinn
    • 1
  • Henry D. Jacoby
    • 1
  1. 1.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Engineering Systems DivisionMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of MeteorologyPennsylvania State UniversityUniversity ParkUSA
  4. 4.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  5. 5.AAAS Science and Technology Policy Fellow, U.S. Environmental Protection AgencyWashington DCUSA

Personalised recommendations