Climatic Change

, Volume 112, Issue 3–4, pp 819–845 | Cite as

Projected changes in the physical climate of the Gulf Coast and Caribbean

  • Michela BiasuttiEmail author
  • Adam H. Sobel
  • Suzana J. Camargo
  • Timothy T. Creyts


As the global climate warms due to increasing greenhouse gases, the regional climate of the Gulf of Mexico and Caribbean region will also change. This study presents the latest estimates of the expected changes in temperature, precipitation, tropical cyclone activity, and sea level. Changes in temperature and precipitation are derived from climate model simulations produced for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), by comparing projections for the mid- and late-21st century to the late 20th century and assuming a “middle-of-the-road” scenario for future greenhouse gas emissions. Regional simulations from the North America Regional Climate Change Program (NARCCAP) are used to corroborate the IPCC AR4 rainfall projections over the US portion of the domain. Changes in tropical cyclones and sea level are more uncertain, and our understanding of these variables has changed more since IPCC AR4 than in the case of temperature and precipitation. For these quantities, the current state of knowledge is described based on the recent peer-reviewed literature.


Tropical Cyclone Heat Wave Storm Surge Gulf Coast Warm Night 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the researchers that produced Figs. 1, 12, 16, and 17 and to the publishers that granted permission to use them; to the modeling groups that provided climate simulations to the CMIP3 project; to the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Programme’s (WCRP’s) Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset (support of this dataset is provided by the Office of Science, U.S. Department of Energy); and to NARCCAP for the regional simulations (NARCCAP is funded by the National Science Foundation (NSF), the U.S. Department of Energy (DoE), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Environmental Protection Agency Office of Research and Development (EPA)).

This work was supported by the Earth Institute at Columbia University to inform policy-makers in the Gulf region in preparation for the United Nations Cancun Climate Summit.


  1. Allison I, Bindoff N, Bindschadler R, Cox P, de Noblet N, England M, Francis J, Gruber N, Haywood A, Karoly D et al (2009) The Copenhagen Diagnosis, 2009: updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, p 60Google Scholar
  2. Bamber JL, Alley RB, Joughin I (2007) Rapid response of modern day ice sheets to external forcing. Earth Planet Sci Lett 257:1–13. doi: 10.1016/j.epsl.2007.03.005 CrossRefGoogle Scholar
  3. Battisti DS, Naylor (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323. doi: 10.1126/science.1164363
  4. Blanchon P, Eisenhauer A, Fietzke J, Liebetrau V (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458:881–885. doi: 10.1038/nature07933 CrossRefGoogle Scholar
  5. Bueno R, Herzfeld C, Stanton E, Ackerman F (2008) The Caribbean and climate change: the costs of inaction. Tech. rep., Stockholm Environment Institute—US Center, Global Development and Environment Institute, Tufts University, Somerville, MAGoogle Scholar
  6. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65(1–2):83–88. doi: 10.1016/j.gloplacha.2008.10.004 CrossRefGoogle Scholar
  7. Chang EK, Guo MY (2007) Is the number of north atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys Res Lett 34:L14,801Google Scholar
  8. Church JA, White NJ (2006) A 20th century acceleration in global sea-level change. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  9. Diffenbaugh N, Ashfaq M (2010) Intensification of hot extremes in the united states. Geophys Res Lett 37:L15701. doi: 10.1029/2010GL043888
  10. DiNezio PN, Clement AC, Vecchi GA, Soden BJ (2009) Climate response of the equatorial pacific to global warming. J Climate 22:4873–4892CrossRefGoogle Scholar
  11. Dube SK, Chittibabu P, Sinha PC, Rao AD, Murty TS (2004) Numerical modelling of storm surge in the Head Bay of Bengal using location specific model. Nat Hazards 31:437–453. doi: 10.1023/B:NHAZ.0000023361.94609.4a CrossRefGoogle Scholar
  12. Dube SK, Jain I, Rao AD, Murty TS (2009) Storm surge modelling for the Bay of Bengal and Arabian Sea. Nat Hazards 51:3–27. doi: 10.1007/s11069-009-9397-9 CrossRefGoogle Scholar
  13. Elsner JB, Jagger TH, Dickinson M, Rowe D (2008) Improving multiseason forecasts of North Atlantic hurricane activity. J Climate 21:1209–1219CrossRefGoogle Scholar
  14. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi: 10.1038/nature03906 CrossRefGoogle Scholar
  15. Emanuel K (2007) Environmental factors affecting tropical cyclone power dissipation. J Climate 20:5497–5509CrossRefGoogle Scholar
  16. Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485CrossRefGoogle Scholar
  17. Evan AT, Vimont DJ, Heidinger AK, nand R Bennartz JPK (2009) The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science 324:778–781CrossRefGoogle Scholar
  18. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479CrossRefGoogle Scholar
  19. Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology over the tropical oceans. Royal Meteorological Society, pp 155–218Google Scholar
  20. Grinsted A, Moore JC, Jefrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472CrossRefGoogle Scholar
  21. Grinsted A, Moore JC, Jefrejeva S (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37. doi: 10.1029/2010GL042947
  22. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699CrossRefGoogle Scholar
  23. Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541CrossRefGoogle Scholar
  24. Horton R, Herweijer C, Rosenzweig C, Liu J, Gornitz V, Ruane AC (2008) Sea level rise projections for current generation CGCMS based on the semi-empirical method. Geophys Res Lett 35. doi: 10.1029/2007GL032.486
  25. IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  27. Karl TR, Melillo JM, Peterson TC, Hassol SJ (2009) Global climate change impacts in the United States. Cambridge University Press, CambridgeGoogle Scholar
  28. Kharin V, Zwiers F, Zhang X, Hegerl G (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate 20(8):1419–1444. doi: 10.1175/JCLI4066.1 CrossRefGoogle Scholar
  29. Knutson TR, McBride J, Chan J, Emanuel KA, Holland G, Landsea C, Held I, Kossin J, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nature Geoscience 3:157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  30. Kopp R, Simons F, Mitrovica J, Maloof A, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462(7275):863–867CrossRefGoogle Scholar
  31. Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34:L04,815CrossRefGoogle Scholar
  32. Landsea CW (2005) Hurricanes and global warming. Nature 438:E11–E13. doi: 10.1038/nature04477 CrossRefGoogle Scholar
  33. Landsea CW (2007) Counting atlantic tropical cyclones back to 1900. EOS Trans AGU 88(18). doi: 10.1029/2007EO180001
  34. Landsea CW, Harper BA, Horau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454. doi: 10.1126/science.1128448 CrossRefGoogle Scholar
  35. Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on atlantic tropical cyclone counts. J Climate. doi: 10.1175/2009JCLI3034.1 Google Scholar
  36. Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36. doi: 10.1029/2009GL038609
  37. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS 87:233, 238, 241Google Scholar
  38. Mann ME, Sabbatelli TA, Neu U (2007) Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys Res Lett 36:L22,707Google Scholar
  39. Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  40. Milliken KT, Anderson JB, Rodriguez AB (2008) A new composite Holocene sea-level curve for the northern Gulf of Mexico. In: Anderson JB, Rodriguez AB (eds) Response of upper Gulf Coast estuaries to Holocene climate change and sea-level rise. Geological Society of America, Boulder, CO, special paper 443, pp 1–11. doi: 10.1130/2008.2443(01)
  41. Mitrovica J, Gomez N, Clark P (2009) The sea-level fingerprint of West Antarctic collapse. Science 323(5915):753CrossRefGoogle Scholar
  42. Philander SGH (1990) El Niño, La Niña and the southern oscillation. Academic, New YorkGoogle Scholar
  43. Pollard D, DeConto R (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332CrossRefGoogle Scholar
  44. Prandi P, Cazenave A, Becker M (2009) Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and satellite altimetry over 1993–2007. Geophys Res Lett 36:L05602. doi: 10.1029/2008GL036564 CrossRefGoogle Scholar
  45. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975. doi: 10.1038/nature08471 CrossRefGoogle Scholar
  46. Rahmstorf S (2010) A new view on sea level rise. Nature 4. doi: 10.1038/climate.2010.29
  47. Rao AD, Jain I, Murthy MVR, Murty TS, Dube SK (2008) Impact of cyclonic wind field on interaction of surge?wave computations using finite-element and finite-difference models. Nat Hazards 49:225–239. doi: 10.1007/s11069-008-9284-9 CrossRefGoogle Scholar
  48. Rauscher S, Giorgi F, Diffenbaugh N, Seth A (2008) Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571. doi: 10.1007/s00382-007-0359-1 CrossRefGoogle Scholar
  49. Rauscher SA, Kucharski F, Enfield DB (2010) The role of regional sst warming variations in the drying of meso-america in future climate projections*. J Climate 24(7):2003–2016. doi: 10.1175/2010JCLI3536.1 CrossRefGoogle Scholar
  50. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311(5763):986–990. doi: 10.1126/science.1121381 CrossRefGoogle Scholar
  51. Rignot E, Bamber JL, Broeke MRVD, Davis C, Li YH, Berg WJVD, Meijgaard EV (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106–110. doi: 10.1038/ngeo102 CrossRefGoogle Scholar
  52. Sarachik ES, Cane MA (2010) The El Niño—southern oscillation phenomenon. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112(F3):1–19CrossRefGoogle Scholar
  54. Sobel AH (2007) Simple models of ensemble-averaged tropical precipitation and surface wind. In: Schneider T, Sobel AH (eds) The global circulation of the atmosphere. Princeton University Press, PrincetonGoogle Scholar
  55. Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Climate 15:2702–2706CrossRefGoogle Scholar
  56. Swanson KL (2008) Nonlocality of atlantic tropical cyclone intensity. Geochem Geophys Geosyst 9:Q04V01CrossRefGoogle Scholar
  57. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and natural 20th century SST trends in the north atlantic. J Climate 22:1469–1481CrossRefGoogle Scholar
  58. Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the US Atlantic and Gulf Coasts. Clim Res 18:205–228CrossRefGoogle Scholar
  59. Vecchi GA, Knutson TR (2008) On estimates of historical north atlantic tropical cyclone activity. J Climate 21:3580–3600. doi: 10.1175/2008JCLI2178.1 CrossRefGoogle Scholar
  60. Vecchi GA, Soden BJ (2007a) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070CrossRefGoogle Scholar
  61. Vecchi GA, Soden BJ (2007b) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340CrossRefGoogle Scholar
  62. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441. doi: 10.1038/nature04744
  63. Vecchi GA, Swanson KL, Soden BJ (2008) Whither hurricane activity? Science 322:687. doi: 10.1126/science.1164396 CrossRefGoogle Scholar
  64. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532CrossRefGoogle Scholar
  65. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305CrossRefGoogle Scholar
  66. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi: 10.1126/science.1116448 CrossRefGoogle Scholar
  67. Wingham DJ, Wallis DW, Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning. Geophys Res Lett 36:L17501. doi: 10.1029/2009GL039126 CrossRefGoogle Scholar
  68. Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Climate, early online. doi: 10.1175/2009JCLI3329.1

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michela Biasutti
    • 1
    Email author
  • Adam H. Sobel
    • 1
    • 2
  • Suzana J. Camargo
    • 1
  • Timothy T. Creyts
    • 1
  1. 1.Lamont–Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  2. 2.Departments of Applied Physics and Applied Mathematics & Earth and Environmental SciencesColumbia UniversityPalisadesUSA

Personalised recommendations