Climatic Change

, Volume 111, Issue 2, pp 215–239 | Cite as

Vertical structure of recent arctic warming from observed data and reanalysis products

  • Vladimir A. AlexeevEmail author
  • Igor Esau
  • Igor V. Polyakov
  • Sarah J. Byam
  • Svetlana Sorokina


Spatiotemporal patterns of recent (1979–2008) air temperature trends are evaluated using three reanalysis datasets and radiosonde data. Our analysis demonstrates large discrepancies between the reanalysis datasets, possibly due to differences in the data assimilation procedures as well as sparseness and inhomogeneity of high-latitude observations. We test the robustness of arctic tropospheric warming based on the ERA-40 dataset. ERA-40 Arctic atmosphere temperatures tend to be closer to the observed ones in terms of root mean square error compared to other reanalysis products used in the article. However, changes in the ERA-40 data assimilation procedure produce unphysical jumps in atmospheric temperatures, which may be the likely reason for the elevated tropospheric warming trend in 1979–2002. NCEP/NCAR Reanalysis data show that the near-surface upward temperature trend over the same period is greater than the tropospheric trend, which is consistent with direct radiosonde observations and inconsistent with ERA-40 results. A change of sign in the winter temperature trend from negative to positive in the late 1980s is documented in the upper troposphere/lower stratosphere with a maximum over the Canadian Arctic, based on radiosonde data. This change from cooling to warming tendency is associated with weakening of the stratospheric polar vortex and shift of its center toward the Siberian coast and possibly can be explained by the changes in the dynamics of the Arctic Oscillation. This temporal pattern is consistent with multi-decadal variations of key arctic climate parameters like, for example, surface air temperature and oceanic freshwater content. Elucidating the mechanisms behind these changes will be critical to understanding the complex nature of high-latitude variability and its impact on global climate change.


Pacific Decadal Oscillation Lower Stratosphere Reanalysis Dataset Reanalysis Product Radiosonde Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study was supported by the National Science Foundation grants ARC 0909525, ARC 0652838 (VA, IP), National Oceanographic and Atmospheric Administration, Japan Agency for Marine-Earth Science and Technology (VA, IP), and the University of Alaska Fairbanks (SB). IE and SS were supported by the Norwegian Research Council projects PAACSIZ 178908/S30 “Planetary Boundary Layer Feedbacks Affecting the Polar Amplification of Arctic Climate Change in Seasonal Ice Zone”, POCAHONTAS 178345/S30 “Polar Climate and Heat Impact on the Arctic Shelves”, and NORCLIM 178245/S30 “Norwegian Climate Assessment”. ECMWF ERA-40 data used in this project were provided by ECMWF and obtained from the ECMWF data server. NCEP data used in this project were provided by NCEP and obtained from the NCEP data server. The JRA-25 data were obtained from the JRA-25 website: The authors thank David Bromwich for useful discussions.


  1. Alexeev VA (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: A linear analysis. Clim Dyn 20:775–787Google Scholar
  2. Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn. doi: 10.1007/s00382-005-0018-3
  3. Beesley JA et al (2000) A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. JGR-atmospheres 105(10):12337–12349CrossRefGoogle Scholar
  4. Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern arctic warming. J Climate 23(14):3888–3906Google Scholar
  5. Bengtsson L, Hagemann S, Hodges KI (2004a) Can climate trends be computed from reanalysis data? JGR-atmospheres 109. doi: 10.2001/2004JD00
  6. Bengtsson L, Hodges KI, Hagemann S (2004b) Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus A 56:456–471CrossRefGoogle Scholar
  7. Bitz CM, Fu Q (2008) Arctic warming aloft is dataset dependent. Nature 455:E3–E4CrossRefGoogle Scholar
  8. Bromwich DH, Wang S-H (2005) Evaluation of the NCEP–NCAR and ECMWF 15- and 40-Yr reanalyses using rawinsonde data from two independent arctic field experiments. Mon Weather Rev 133:3562–3578CrossRefGoogle Scholar
  9. Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112. doi: 10.1029/2006JD007859
  10. Byrkjedal O, Esau I, Kvamstoe N-G (2008) Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Clim Dyn 30:687–701CrossRefGoogle Scholar
  11. Chen Y, Francis JA, Miller JR (2002) Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations. J Climate 15:3698–3708CrossRefGoogle Scholar
  12. Cohen J, Entekhabi D (1999) Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys Res Lett 26:345–348CrossRefGoogle Scholar
  13. Cohen J, Barlow M (2005) The NAO, the AO, and global warming: How closely related? J Climate 18:4498–4513CrossRefGoogle Scholar
  14. Cohen J, Fletcher C (2007) Improved skill for Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J Climate 20:4118–4132CrossRefGoogle Scholar
  15. Collins WG (2001) The operational complex quality control of radiosonde heights and temperatures at the national centers for environmental prediction. Part I: Description of the method. J Applied Meteor 40:137–151CrossRefGoogle Scholar
  16. Flannery BP (1984) Energy-balance models incorporating transport of thermal and latent energy. J Atm Sci 41:414–421CrossRefGoogle Scholar
  17. Francis JA, Hunter E (2007) Changing fabric of the arctic blanket, Environmental Research Letters, 2, Article 045011Google Scholar
  18. Gaffen DJ (1994) Temporal inhomogeneities in radiosonde temperature records. J Geophys Res 99:3667–3676CrossRefGoogle Scholar
  19. Gaffen DJ (1996) A digitized metadataset of global upper-air station histories, NOAA Technical Memorandum ERL ARL-211Google Scholar
  20. Gandin LS (1988) Complex quality control of meteorological observations. Mon Wea Rev 116:1137–1156CrossRefGoogle Scholar
  21. Gillett N et al (2008) The Arctic and Antarctic: Two faces of climate change. Eos 89:177–178CrossRefGoogle Scholar
  22. Grant AN, Broennimann S, Haimberger L (2008) Recent Arctic warming structure contested. Nature 455:E2–E3CrossRefGoogle Scholar
  23. Graversen RG et al (2008) Vertical structure of recent Arctic warming. Nature 451:53–56CrossRefGoogle Scholar
  24. Hartmann B, Wendler G (2005) On the significance of the 1976 Pacific climate shift in the climatology of Alaska. J Clim 18:4824–4839CrossRefGoogle Scholar
  25. IPCC (Intergovernmental Panel for Climate Change) (2007) Fourth assessment report. The physical sciences basis. Contribution of working group I to the fourth assessment report of the IPCC, Cambridge University Press, ISBN 978-0-521-88009-1, 996pGoogle Scholar
  26. Johannessen OM et al (2004) Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A 56:328–341CrossRefGoogle Scholar
  27. Jones PD, Moberg A (2003) Hemispheric and large scale surface air temperature variations: An extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  28. Kahl J (1998) Daily Arctic Ocean rawinsonde data from Soviet drifting ice stations. National Snow and Ice Data Center, digital media, Boulder, COGoogle Scholar
  29. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. BAMS 77:437–471CrossRefGoogle Scholar
  30. Kanamitsu M et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). BAMS 83:1631–1643CrossRefGoogle Scholar
  31. Kuzmina S et al (2008) High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded dataset 1900–2000. Tellus A 60:289–304CrossRefGoogle Scholar
  32. Langen PL, Alexeev VA (2005) Analysis of 2xCO2 sensitivity in an aquaplanet GCM using fluctuation-dissipation theorem, GRL, L23708Google Scholar
  33. Langen PL, Alexeev VA (2007) Polar amplification as a preferred response in an aquaplanet GCM. Clim Dyn. doi: 10.1007/s00382-006-0221-x
  34. Mantua NJ et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. BAMS 78:1069–1079CrossRefGoogle Scholar
  35. Marshall GJ et al (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. GRL 31:L14205. doi: 10.1029/2004GL019952 CrossRefGoogle Scholar
  36. Mesinger F et al (2006) North American regional reanalysis. BAMS 87. doi: 10.1175/BAMS-87-3-343
  37. Nakamura N, Oort AH (1988) Atmospheric heat budgets of the polar regions. J Geophys Res 93:9510–9524CrossRefGoogle Scholar
  38. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 Reanalysis. J Meteor Soc Japan 85:369–432CrossRefGoogle Scholar
  39. Overland JE, Guest PS (1992) The Arctic snow and air-temperature budget over sea ice during winter. JGR Oceans 96:4651–4662CrossRefGoogle Scholar
  40. Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. In: The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph 85, Johannessen, O., R. Muench, and J. Overland (eds.), AGU pp 313–325Google Scholar
  41. Overpeck J et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256CrossRefGoogle Scholar
  42. Polyakov IV et al (2003) Observationally based assessment of polar amplification of global warming. GRL 29:1878. doi: 1029/2001GL011111 CrossRefGoogle Scholar
  43. Polyakov IV, Alexeev VA, Belchansky GI et al (2008) Arctic Ocean freshwater changes over the past 100 years and their causes. J of Climate 21:364–384CrossRefGoogle Scholar
  44. Ramaswamy V et al (2006) Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 311:1138–1141CrossRefGoogle Scholar
  45. Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914CrossRefGoogle Scholar
  46. Rinke A et al (2006) Evaluation of an ensemble of Arctic regional climate models: Spatial patterns and height profiles. Clim Dyn. doi: 10.1007/s00382-005-0095-3
  47. Rodgers KB et al (2003) A tropical mechanism for Northern Hemisphere deglaciation. Geochem Geophys Geosys 4(5):1046. doi: 10.1029/1003GC000508 CrossRefGoogle Scholar
  48. Schneider EK, Lindzen RS, Kirtman BP (1997) A tropical influence on the global climate. J Atmos Sci 54:1349–1358CrossRefGoogle Scholar
  49. Schwartz BE, Doswell CA III (1991) North American rawinsonde observations: Problems, concerns, and a call to action. Bull Amer Meteor Soc 72:1885–1896CrossRefGoogle Scholar
  50. Serreze MC et al (2000) Observational evidence of recent change in the northern high latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  51. Serreze MC, Francis JA (2006) The Arctic Amplification debate. Clim Change. doi: 10.1007/s10584-005-9017-y
  52. Serreze MC et al (2009) The emergence of the surface-based Arctic amplification. The Cryosphere Discussions 2:601–622CrossRefGoogle Scholar
  53. Simmons AJ et al. (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature, J. Geophys, Res., 109, D24115, doi: 10.1029/2004JD005306
  54. Sverdrup HO (1933) The Norwegian North Polar expedition with the Maud, Vol. II, Meteorology, Geophysical Institute Bergen, pp 331Google Scholar
  55. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  56. Thorne PW et al (2005) Revisiting radiosonde upper air temperatures from 1958 to 2002. J Geophys Res 110:D18105. doi: 10.1029/2004JD005753 CrossRefGoogle Scholar
  57. Thorne PW (2008) Arctic tropospheric warming amplification? Nature 455:E1–E2CrossRefGoogle Scholar
  58. Tjernstroem M (2005) The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Boundary-Layer Meteorology 117:5–36CrossRefGoogle Scholar
  59. Tjernstroem M et al (2005) Modeling the Arctic Boundary Layer: An evaluation of six ARC­MIP regional-scale models with data from the SHEBA project. Boundary-Layer Meteorology 117:337–381CrossRefGoogle Scholar
  60. Trenberth KE et al (2001) Quality of reanalyses in the Tropics. J Clim 14:1499–1510CrossRefGoogle Scholar
  61. Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J of Climatology 27:277–293CrossRefGoogle Scholar
  62. Uppala SM et al (2005) The ERA-40 reanalysis, Quarterly. J of the Royal Met Society 61:3493–3512Google Scholar
  63. Uttal T et al (2002) Surface heat budget of the Arctic Ocean. BAMS 82:255–275CrossRefGoogle Scholar
  64. Wigley TML (2006) Statistical issues regarding trends, Appendix A from the US Climate change science program report “Temperature trends in the lower atmosphere: steps for understanding and reconciling differences” ( Direct link to Appendix A from the report:

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vladimir A. Alexeev
    • 1
    Email author
  • Igor Esau
    • 2
    • 3
  • Igor V. Polyakov
    • 1
  • Sarah J. Byam
    • 1
  • Svetlana Sorokina
    • 2
    • 3
  1. 1.International Arctic Research CenterUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Thormoehlensgate 47, Nansen Environmental and Remote Sensing CenterBergenNorway
  3. 3.Allegaten 55, Bjerknes Centre for Climate ResearchBergenNorway

Personalised recommendations