Climatic Change

, Volume 111, Issue 3–4, pp 665–696 | Cite as

Recent Climate Change at the Upper Danube—A temporal and spatial analysis of temperature and precipitation time series

Article

Abstract

The following study investigates temperature and precipitation trends in instrumental time series between 1960 and 2006 at 88 meteorological stations located in the Upper Danube Basin. Time series were tested for inhomogeneities with several common homogeneity tests, trend magnitudes of annual and seasonal time series were calculated by least square fitting and the significance of trend values was checked and quantified by the Mann-Kendall test. The results confirm a particularly strong recent Climate Change in the investigation area. Increasing temperature trends show remarkably high trend values up to 0.8°C/decade in the summer season. The trends are highly significant for all investigated summer, spring and annual time series. Winter and spring temperature trends show consistently positive trend values as well even though some time series show no significance at all and the calculated trend values are smaller. Autumn temperature trends are mostly non-significant with low values (up to 0.3°C/decade) and several negative trends. Most of the highest trend values can be found in lower altitudes whereas stations situated in alpine regions tend to show low trend magnitudes and often exhibit non-significant results. Precipitation time series show positive as well as negative trends in the annual and seasonal analysis. At most stations a precipitation decrease in summer and autumn and an increase in winter was observed during the last 47 years whereas the spring and mean annual precipitation exhibits no change at all. But most time series are not conclusive since they show predominantly no significance and they often exhibit only low trend values.

Notes

Acknowledgements

GLOWA-Danube is financed by the German Ministry for Education and Research (bmb + f), the Free State of Bavaria and the Ludwig-Maximilians University (LMU) of Munich. We thank the German Weather Service (DWD) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) for providing the necessary meteorological data. Special thanks go to Markus Muerth at the Department of Geography of LMU for his constant engagement in the improvement of this paper.

References

  1. Alexandersson H (1986) A Homogeneity Test Applied to Precipitation Data. J Clim 6:661–675. doi: 10.1002/joc.3370060607 CrossRefGoogle Scholar
  2. Alexandersson H (1995) Homogeneity Testing, Multiple Breaks and Trends. Proceedings of the 6th International Meeting on Statistical Climatology, Galway, pp 439–441Google Scholar
  3. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. doi: 10.1002/joc.1118 CrossRefGoogle Scholar
  4. Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate change in Switzerland. Theor Appl Climatol 49:135–159. doi: 10.1007/BF00865530 CrossRefGoogle Scholar
  5. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schoener W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi: 10.1002/joc.689 CrossRefGoogle Scholar
  6. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242. doi: 10.1002/joc.1718 CrossRefGoogle Scholar
  7. Buffoni L, Maugeri M, Nanni T (1999) Precipitation in Italy from 1833 to 1996. Theor Appl Climatol 63:33–40. doi: 10.1007/s007040050089 CrossRefGoogle Scholar
  8. Buishand TA (1982) Some Methods for Testing the Homogeneity of Rainfall Records. J Hydrol 58:11–27. doi: 10.1016/0022-1694(82)90066-X CrossRefGoogle Scholar
  9. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734. doi: 10.1002/joc.1623 CrossRefGoogle Scholar
  10. Craddock JM (1979) Methods of Comparing Annual Rainfall Records for Climatic Purposes. Weather 34:332–346Google Scholar
  11. Degirmendžić J, Kożuchowski K, Żmudzka E (2004) Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int J Climatol 24:291–310. doi: 10.1002/joc.1010 CrossRefGoogle Scholar
  12. Domonkos P, Tar K (2003) Long-term changes in observed temperature and precipitation series 1901–1998 from Hungary and their relations to larger scale changes. Theor Appl Climatol 75:131–147. doi: 10.1007/s00704-002-0716-2 CrossRefGoogle Scholar
  13. Feidas H, Noulopoulou CH, Makrogiannis T, Bora-Senta E (2007) Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor Appl Climatol 87:155–177. doi: 10.1007/s00704-006-0200-5 CrossRefGoogle Scholar
  14. Founda D, Papadopoulos KH, Petrakis M, Giannakopoulos C, Good P (2004) Analysis of mean, maximum, and minimum temperature in Athens from 1897–2001 with emphasis on the last decade: trends, warm events, and cold events. Glob Planet Change 44:27–38. doi: 10.1016/j.gloplacha.2004.06.003 CrossRefGoogle Scholar
  15. Franke J, Goldberg V, Eichelmann U, Freydank E, Bernhofer C (2004) Statistical analysis of regional climate trends in Saxony, Germany. Clim Res 27:145–150. doi: 10.3354/cr027145 CrossRefGoogle Scholar
  16. Gattermayr W (2001) Hydrometeorologische Erhebungen am Mühleggerköpfl / Nordtiroler Kalkalpen. In: Herman F, Smidt S, Englisch M (eds) Stickstoffflüsse am Mühleggerköpfl in den Nordtiroler Kalkalpen, FBVA-Berichte 119, Wien, pp 53–59Google Scholar
  17. GLOWA-Danube Projekt (Hrsg.) (2010) Global Change Atlas Einzugsgebiet Obere Donau. München, 2010.Google Scholar
  18. Good P, Giannakopoulos C, Flocas H, Tolika K, Anagnostopoulou C, Maherasd P (2008) Significant changes in the regional climate of the Aegean during 1961–2002. Int J Climatol 28:1735–1749. doi: 10.1002/joc.1660 CrossRefGoogle Scholar
  19. Kendall MG (1975) Rank Correlation Methods. Charles Griffin, LondonGoogle Scholar
  20. KLIWA (ed) (2005a) Langzeitverhalten der Lufttemperatur in Baden-Württemberg und Bayern. KLIWA-Heft 5, MünchenGoogle Scholar
  21. KLIWA (ed) (2005b) Langzeitverhalten des Gebietsniederschlags in Baden-Württemberg und Bayern. KLIWA-Heft 7, MünchenGoogle Scholar
  22. Lean JH, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophs Res Lett 36:L15708. doi: 10.1029/209GL038932 CrossRefGoogle Scholar
  23. Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments—the integrative perspective of GLOWA-Danube. Phys Chem Earth 28:621–634. doi: 10.1016/S1474-7065(03)00108-6 CrossRefGoogle Scholar
  24. Lund R, Seymour L, Kafadar K (2001) Temperature trends in the United States. Environmetrics 12:673–690. doi: 10.1002/env.468 CrossRefGoogle Scholar
  25. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  26. Matulla C, Penlap EK, Haas P, Formayer H (2003) Comparative Analysis of Spatial and Seasonal Variability: Austrian Precipitation during the 20th Century. Int J Climatol 23:1577–1588. doi: 10.1002/joc.960 CrossRefGoogle Scholar
  27. Mauser W, Bach H (2009) PROMET—a Physical Hydrological Model to Study the Impact of Climate Change on the Water Flows of Medium Sized, Mountain Watersheds. J Hydrol 376:362–377. doi: 10.1016/j.jhydrol.2009.07.046 CrossRefGoogle Scholar
  28. Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026. doi: 10.1002/hyp.5993 CrossRefGoogle Scholar
  29. Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Berichte des Deutschen Wetterdienstes 212, Offenbach a. MainGoogle Scholar
  30. Rapp J, Schönwiese CD (1995a) Atlas der Niederschlags- und Temperaturtrends in Deutschland 1891–1990. Frankfurter Geowissenschaftliche Arbeiten Serie B—Meteorologie und Geophysik, Bd. 5, FrankfurtGoogle Scholar
  31. Rapp J, Schoenwiese D (1995b) Niederschlags- und Temperaturtrends in Baden-Württemberg 1955–1994 und 1895–1994. In: Lehn H, Steiner M, Mohr H (eds) Wasser- Die elementare Ressource. Materialienband, Akademie für Technikfolgenabschätzung in Baden-Württemberg, Stuttgart, Arbeitsbericht Nr. 52, pp 113–170Google Scholar
  32. Salmi R, Maeaettae A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s Slope estimates—the excel template application MAKESENS. Publications on air quality, No. 31, HelsinkiGoogle Scholar
  33. Schaefer D, Domroes M (2009) Recent climate change in Japan—spatial and temporal characteristics of trends of temperature. Clim Past 5:13–19CrossRefGoogle Scholar
  34. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 21–91Google Scholar
  35. Štěpánek P (2005) AnClim—software for time series analysis. Department of Geography, Faculty of Natural Sciences, MU, Brno. 1.47 MBGoogle Scholar
  36. Unganai LS (1995) Surface Temperature Variation over Zimbabwe Between 1897 and 1993. Theor Appl Climatol 56:89–101. doi: 10.1007/BF00863786 CrossRefGoogle Scholar
  37. Weber RO, Talkner P, Auer I, Böhm R, Gajić-Čapka M, Zaninović K, Brázdil R, Faško P (1997) 20th-Century Changes of Temperature in the Mountain Regions of Central Europe. Climat Change 36:327–344. doi: 10.1023/A:1005378702066 CrossRefGoogle Scholar
  38. Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theor Appl Climatol 75:15–27. doi: 10.1007/s00704-002-0717.11 Google Scholar
  39. Zhang Q, Xu C-Y, Zhang Z, Ren G, Chen YD (2008) Climate Change or Variability? The Case of Yellow River as Indicated by Extreme Maximum and Minimum Air Temperature during 1960–2004. Theor Appl Climatol 93:35–43. doi: 10.1007/s00704-007-0328-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeographyLudwig-Maximilians University MunichMunichGermany

Personalised recommendations