Climatic Change

, 109:191 | Cite as

Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways

  • Jean-François LamarqueEmail author
  • G. Page Kyle
  • Malte Meinshausen
  • Keywan Riahi
  • Steven J. Smith
  • Detlef P. van Vuuren
  • Andrew J. Conley
  • Francis Vitt


In this paper, we discuss the results of 2000–2100 simulations following the emissions associated with the Representative Concentration Pathways (RCPs) with a chemistry-climate model, focusing on the changes in 1) atmospheric composition (troposphere and stratosphere) and 2) associated environmental parameters (such as nitrogen deposition). In particular, we find that tropospheric ozone is projected to decrease (RCP2.6, RCP4.5 and RCP6) or increase (RCP8.5) between 2000 and 2100, with variations in methane a strong contributor to this spread. The associated tropospheric ozone global radiative forcing is shown to be in agreement with the estimate used in the RCPs, except for RCP8.5. Surface ozone in 2100 is projected to change little compared from its 2000 distribution, a much-reduced impact from previous projections based on the A2 high-emission scenario. In addition, globally-averaged stratospheric ozone is projected to recover at or beyond pre-1980 levels. Anthropogenic aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Consequently, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase in NH3 emissions.


Ozone Black Carbon Aerosol Optical Depth Nitrogen Deposition Anthropogenic Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the three anonymous reviewers, P. Hess and E. Holland for their constructive feedback on previous versions of this paper. A. J. C. and F. V. were funded by the Department of Energy under the SciDAC program. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies.This research was enabled by CISL compute and storage resources. Bluefire, a 4,064-processor IBM Power6 resource with a peak of 77 TeraFLOPS provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PetaBytes of dedicated disk and CISL's 12-PB HPSS archive provided over 1 PetaByte of storage in support of this research project. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation.


  1. Adams P, Seinfeld J, Koch D, Mickley L, Jacob D (2001) General circulation model assessment of direct radiative forcing by the sulfate–nitrate–ammonium–water inorganic aerosol system. J Geophys Res 106:1097–1111CrossRefGoogle Scholar
  2. Anenberg SC, West JJ, Fiore AM, Jaffe DA, Prather MJ, Bergmann D, Cuvelier C, Dentener FJ, Duncan BN, Gauss M, Hess P, Jonson JE, Lupu A, MacKenzie IA, Marmer E, Park RJ, Sanderson M, Schultz M, Shindell DT, Szopa S, Garcia Vivanco M, Wild O, Zeng G (2009) Intercontinenal impacts of ozone pollution on human mortality. Environ Sci Tech 43(17):6482–6487CrossRefGoogle Scholar
  3. Austin J, Struthers H, Scinocca J, Plummer D, Akiyoshi H, Baumgaertner AJG, Bekki S, Bodeker GE, Braesicke P, Bruhl C, Butchart N, Chipperfield M, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Gettelman A, Hardiman S, Jockel P, Kinnison D, Lamarque J-F, Marchand M, Michou M, Morgenstern O, Nakamura T, Nielsen JE, Pitari G, Pyle J, Shepherd TG, Shibata K, Smale D, Stolarski R, Teyssedre H, Yamashita Y (2010) Chemistry climate model simulations of the Antarctic ozone hole. J Geophys Res, 115, D00M11, doi: 10.1029/2009JD013577
  4. Barth M, Rasch PJ, Kiehl JT, Benkovitz CM, Schwartz SE (2000) Sulfur chemistry in the NCAR CCM: description, evaluation, features and sensitivity to aqueous chemistry. J Geophys Res 105:1387–1415CrossRefGoogle Scholar
  5. Billen G, Beusen A, Bouwman L, Garnier J (2010) Anthropogenic nitrogen autotrophy and heterotrophy of the world’s watersheds: Past, present, and future trends, Global Biogeochem Cycles 24, GB0A11, doi: 10.1029/2009GB003702.
  6. Bobbink R, Hornung M, Roelofs JM (1998) The effects of airborne pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi: 10.1029/2002JD002272 CrossRefGoogle Scholar
  7. Bond TC, Zarzycki C, Flanner MG, Koch DM (2010) Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmos Chem Phys Discuss 10:15713–15753CrossRefGoogle Scholar
  8. Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141:349–382CrossRefGoogle Scholar
  9. Butchart N et al (2006) Simulations of the anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn 27:727–741. doi: 10.1007/s00382-006-0162-4 CrossRefGoogle Scholar
  10. Butchart SHM et al (2010) Did we meet the 2010 biodiversity target? A synthesis of global indicators. Science 328(5982):1164–1168. doi: 10.1126/science.1187512 CrossRefGoogle Scholar
  11. Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res 110:D11102. doi: 10.1029/2004JD005441 CrossRefGoogle Scholar
  12. Chung CE, Ramanathan V, Kim D, Podgorny IA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. doi: 10.1029/2005JD006356 CrossRefGoogle Scholar
  13. Collins WD, Rasch PJ, Eaton BE, Fillmore DW, Kiehl JT, Beck CT, Zender CS (2002) Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J Geophys Res, 107(D19), 8028, doi: 10.1029/2000JD000032
  14. Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J Geophys Res 104, 22, 137–22, 162Google Scholar
  15. Dentener F et al (2006a) Nitrogen and Sulphur Deposition on regional and global scales: a multi-model evaluation, Global Biogeochem. Cycles, 20, GB4003, doi: 10.1029/2005GB002672
  16. Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud J-P, Textor C, Schulz M, van der Werf GR, Wilson J (2006b) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344CrossRefGoogle Scholar
  17. Eyring V et al (2010a) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37:L16807. doi: 10.1029/2010GL044443 CrossRefGoogle Scholar
  18. Eyring V et al (2010b) Multi-model assessment of ozone return dates and ozone recovery in CCMVal-2 models. Atmos Chem Phys 10:9451–9472. doi: 10.5194/acp-10-9451-2010 CrossRefGoogle Scholar
  19. Fiore AM et al (2002) Linking ozone air pollution and climate change: the case for controlling methane. Geophys Res Lett 29:1919. doi: 10.1029/2002GL015601 CrossRefGoogle Scholar
  20. Fiore AM et al (2009) Multi-model estimates of intercontinental source-receptor relationships for ozone pollution. J Geophys Res 114:D04301. doi: 10.1029/2008jd010816 CrossRefGoogle Scholar
  21. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, Questions, and Potential Solutions. Science 320:889. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  23. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112. doi: 10.1029/2006JD007485
  24. Gauss M et al (2006) Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos Chem Phys 6:575–599CrossRefGoogle Scholar
  25. Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2009) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dynam 79:25–58. doi: 10.1007/s00382-009-0614-8 Google Scholar
  26. Granier C, Bessagnet B, Bond T, D’Angiola A, van der Gon HG, Frost G, Heil A, Kainuma M, Kaiser J, Kinne S et al (2011) Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Climatic Change (this issue). doi: 10.1007/s10584-011-0154-1
  27. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  28. Hegglin MA, Shepherd TG (2009) Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat Geosci 2:687–691. doi: 10.1038/ngeo604 CrossRefGoogle Scholar
  29. Holland EA et al (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems, J Geophys Res, 102, 15,849-15,866Google Scholar
  30. Holland EA, Braswell BH, Sulzman J, Lamarque J-F (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15(1):38–57CrossRefGoogle Scholar
  31. Houweling S, Dentener F, Lelieveld J (2005) The impact of non-methane hydrocarbon compounds on tropospheric photochemistry. J Geophys Res 103, 10,673–10,696, doi: 10.1029/97JD03582
  32. Jacobson MZ (2000) A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys Res Lett 27:217–220CrossRefGoogle Scholar
  33. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697. doi: 10.1038/35055518 CrossRefGoogle Scholar
  34. Jacobson MZ (2010) Short-term effects of controlling fossil fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res 115:D14209. doi: 10.1029/2009JD013795 CrossRefGoogle Scholar
  35. Jonson JE, Stohl A, Fiore AM, Hess P, Szopa S, Wild O, Zeng G, Dentener FJ, Lupu A, Schultz MG, Duncan BN, Sudo K, Wind P, Schulz M, Marmer E, Cuvelier C, Keating T, Zuber A, Valdebenito A, Dorokhov V, De Backer H, Davies J, Chen GH, Johnson B, Tarasick DW (2010) A multi-model analysis of vertical ozone profiles. Atmos Chem Phys 10:5759–5783CrossRefGoogle Scholar
  36. Kinnison DE, Brasseur GP, Walters S et al (2007) Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J Geophys Res 112:D20302. doi: 10.1029/2006JD007879 CrossRefGoogle Scholar
  37. Koch D et al (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026CrossRefGoogle Scholar
  38. Lacis AA, Wuebbles DJ, Logan JA (1990) Radiative forcing of climate by changes in the vertical distribution of ozone. J Geophys Res 95:9971–9981CrossRefGoogle Scholar
  39. Lamarque J-F, Solomon S (2010) Impact of changes in climate and halocarbons on recent lower stratosphere ozone and temperature trends. J Clim 23:2599–2611. doi: 10.1175/2010JCLI3179.1 CrossRefGoogle Scholar
  40. Lamarque J-F, Kiehl JT, Hess PG, Collins WD, Emmons LK, Ginoux P, Luo C, Tie XX (2005a) Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone and NOx. Geophys Res Lett 32(16):L16809CrossRefGoogle Scholar
  41. Lamarque J-F, Kiehl J, Brasseur G, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess P, Holland E, Horowitz L, Lawrence M, McKenna D, Merilees P, Prather M, Rasch P, Rotman D, Shindell D, Thornton P (2005b) Assessing future nitrogen deposition and carbon cycle feedback using a multi-model approach. Analysis of nitrogen deposition. J Geophys Res 110:D19303. doi: 10.1029/2005JD005825 CrossRefGoogle Scholar
  42. Lamarque J-F, Kinnison DE, Hess PG, Vitt F (2008) Simulated lower stratospheric trends between 1970 and 2005: identifying the role of climate and composition changes. J Geophys Res 113:D12301. doi: 10.1029/2007JD009277 CrossRefGoogle Scholar
  43. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10. doi: 10.5194/acp-10-7017-2010, 7017-7039
  44. Lathière J, Hauglustaine DA, Friend AD, De Noblet-Ducoudré N, Viovy N, Folberth GA (2006) Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos Chem Phys 6:2129–2146CrossRefGoogle Scholar
  45. Liao H, Adams PJ, Ching SH et al (2003) Interactions between tropospheric chemistry and aerosols in a unified general circulation model, J Geophys Res 108(D1), 4001, doi: 10.1029/2001JD001260
  46. Mahowald N, Muhs DR, Levis S et al (2006a) Change in atmospheric mineral aerosols in response to climate: last glacial period, pre-industrial, modern and doubled-carbon dioxide climates. J Geophys Res 111:D10202. doi: 10210.11029/12005JD006653 CrossRefGoogle Scholar
  47. Mahowald N, Lamarque J-F, Tie XX, Wolff E (2006b) Sea salt aerosol response to climate change: last glacial maximum, pre-industrial, and doubled-carbon dioxide climates. J Geophys Res 111:D05303. doi: 10.1029/2005JD006459 CrossRefGoogle Scholar
  48. Malm WC, Schichtel BA, Pitchford ML, Ashbaugh LL, Eldred RA (2004) Spatial and monthly trends in speciated fine particle concentration in the United States. J Geophys Res 109. doi: 10.1029/2003JD003739
  49. Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) A emission pathway to stabilize at 6 W/m2 of radiative forcing (this issue). doi: 10.1007/s10584-011-0150-5
  50. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  51. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper S, Riahi K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change (this issue). doi: 10.1007/s10584-011-0156-z
  52. Metzger S, Dentener F, Pandis S, Lelieveld J (2002) Gas/aerosol partitioning: 1. A computationally efficient model. J Geophys Res 107:D16. doi: 10.1029/2001JD001102 Google Scholar
  53. Mishchenko MI et al (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543CrossRefGoogle Scholar
  54. Murazaki K, Hess P (2006) How does climate change contribute to surface ozone change over the United States? J Geophys Res 111. doi: 10.1029/2005JD005873
  55. Myhre G, Grini A, Metzger S (2006) Modelling of nitrate and ammonium-containing aerosols in presence of sea salt. Atmos Chem Phys 6:4809–4821. doi: 10.5194/acp-6-4809-2006 CrossRefGoogle Scholar
  56. Prather MJ, Ehhalt D (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 239–287Google Scholar
  57. Prather MJ et al (2003) Fresh air in the 21st century? Geophys Res Lett 30:1100–1103. doi: 10.1029/2002GL016285 CrossRefGoogle Scholar
  58. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: The scientific basis, contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom, p 881Google Scholar
  59. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nature Geosci 1:430–437CrossRefGoogle Scholar
  60. Reidmiller DR, Fiore AM, Jaffe DA, Bergmann D, Cuvelier C, Dentener FJ, Duncan BN, Folberth G, Gauss M, Gong S, Hess P, Jonson JE, Keating T, Lupu A, Marmer E, Park R, Schultz MG, Shindell DT, Szopa S, Vivanco MG, Wild O, Zuber A (2009) The influence of foreign vs. North American emissions on surface ozone in the US. Atmos Chem Phys 9:5027–5042CrossRefGoogle Scholar
  61. Remer LA et al (2008) Global aerosol climatology from the MODIS satellite sensors, J Geophys Res 113, D14S07, doi: 10.1029/2007JD009661
  62. Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-8.5: exploring the consequence of high emission trajectories. Climatic Change (this issue). doi: 10.1007/s10584-011-0149-y
  63. Rind D, Lerner J, McLinden C (2001) Changes of tracer distribution in the doubled CO2 climate. J Geophys Res 106, 28,061-28,079Google Scholar
  64. Sander SP et al (2006) Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15, Publication 06-2. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  65. Sanderson MG, Dentener FJ, Fiore AM, Cuvelier C, Keating TJ, Zuber A, Atherton CS, Bergmann DJ, Diehl T, Doherty RM, Duncan BN, Hess P, Horowitz LW, Jacob DJ, Jonson J-E, Kaminski JW, Lupu A, MacKenzie IA, Mancini E, Marmer E, Park R, Pitari G, Prather MJ, Pringle KJ, Schroeder S, Schultz MG, Shindell DT, Szopa S, Wild O, Wind P (2008) A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophys Res Lett 35:L17815. doi: 10.1029/2008GL035389 CrossRefGoogle Scholar
  66. Savva Y, Berninger F (2010) Sulphur deposition causes a large–scale growth decline in boreal forests in Eurasia, Global Biogeochem. Cycles, 24, GB3002, doi: 10.1029/2009GB003749
  67. Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH (2004) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos Chem Phys 4:857–874CrossRefGoogle Scholar
  68. Schlesinger WH (1997) Biogeochemistry, an analysis of global change. Academic PressGoogle Scholar
  69. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences 106:203–208. doi: 10.1073/pnas.0810193105 CrossRefGoogle Scholar
  70. Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen ISA, Iversen T, Koch D, Kirkevåg A, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T (2006) Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos Chem Phys 6:5225–5246CrossRefGoogle Scholar
  71. Shindell DT, Faluvegi G, Bell N (2003) Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM. Atmos Chem Phys 3:1675–1702. doi: 10.5194/acp-3-1675-2003 CrossRefGoogle Scholar
  72. Shindell DT, Teich H, Chin M, Dentener F, Doherty RM, Faluvegi G, Fiore AM, Hess P, Koch DM, MacKenzie IA, Sanderson MG, Schultz MG, Schulz M, Stevenson DS, Teich H, Textor C, Wild O, Bergmann DJ, Bey I, Bian H, Cuvelier C, Duncan BN, Folberth G, Horowitz LW, Jonson J, Kaminski JW, Marmer E, Park R, Pringle KJ, Schroeder S, Szopa S, Takemura T, Zeng G, Keating TJ, Zuber A (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8:5353–5372CrossRefGoogle Scholar
  73. Stevenson D et al (2006) Multi-model ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111:D08301CrossRefGoogle Scholar
  74. Taylor KE, RJ Stouffer, GA Meehl (2009) A summary of the CMIP5 experiment design.
  75. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296. doi: 10.1126/science.1069270
  76. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change (this issue). doi: 10.1007/s10584-011-0151-4
  77. Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald N (2007) Effects of terrestrial carbon-nitrogen cycle coupling on climate-carbon cycle dynamics. Global Biogeochemical Cycles 21, GB4018, doi: 10.1029/2006GB002868
  78. Tie XX, Brasseur GP, Emmons LK et al (2001) Effects of aerosols on tropospheric oxidants: a global model study. J Geophys Res 106:2931–2964Google Scholar
  79. Tie XX, Madronich S, Walters S et al (2005) Assessment of the global impact of aerosols on tropospheric oxidants. J Geophys Res 110. doi: 10.1029/2004JD005359
  80. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Matsui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) The representative concentration pathways: an overview. Climatic Change. doi: 10.1007/s10584-011-0148-z
  81. van Vuuren DP, Stehfest E, Den Elzen MGJ, Deetman S, Hof A, Isaac M, Klein Goldewijk K, Kram T, Mendoza Beltran A, Oostenrijk R et al (2011b) RCP2.6: exploring the possibility to keep global mean temperature change below 2 degrees. Climatic Change (this issue). doi: 10.1007/s10584-011-0152-3
  82. Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA (2009) The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos Chem Phys 9:2793–2803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jean-François Lamarque
    • 1
    Email author
  • G. Page Kyle
    • 2
  • Malte Meinshausen
    • 3
  • Keywan Riahi
    • 4
  • Steven J. Smith
    • 2
  • Detlef P. van Vuuren
    • 5
    • 6
  • Andrew J. Conley
    • 1
  • Francis Vitt
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Joint Global Change Research InstitutePacific Northwest National LaboratoryCollege ParkUSA
  3. 3.Earth System AnalysisPotsdam Institute for Climate Impact ResearchPotsdamGermany
  4. 4.International Institute for Applied Systems AnalysisLaxenburgAustria
  5. 5.Netherlands Environmental Assessment AgencyUtrechtNetherlands
  6. 6.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations