Climatic Change

, 109:163 | Cite as

Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period

  • Claire Granier
  • Bertrand Bessagnet
  • Tami Bond
  • Ariela D’Angiola
  • Hugo Denier van der Gon
  • Gregory J. Frost
  • Angelika Heil
  • Johannes W. Kaiser
  • Stefan Kinne
  • Zbigniew Klimont
  • Silvia Kloster
  • Jean-François Lamarque
  • Catherine Liousse
  • Toshihiko Masui
  • Frederik Meleux
  • Aude Mieville
  • Toshimasa Ohara
  • Jean-Christophe Raut
  • Keywan Riahi
  • Martin G. Schultz
  • Steven J. Smith
  • Allison Thompson
  • John van Aardenne
  • Guido R. van der Werf
  • Detlef P. van Vuuren
Article

Abstract

Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980–2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50–80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.

References

  1. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15(4):955–966CrossRefGoogle Scholar
  2. Arora VK, Boer GJ (2005) Fire as an interactive component of dynamic vegetation models. J Geophys Res 110:G02008. doi:10.1029/2005JG000042 CrossRefGoogle Scholar
  3. Assamoi E-M, Liousse C (2010) A new inventory for two-wheel vehicle in West Africa for 2002. Atmos Env 44(32):3985–3996CrossRefGoogle Scholar
  4. Barret B, Williams JE, Bouarar I, Yang X, Josse B, Law K, Pham M, Le Flochmoën E, Liousse C, Peuch VH, Carver GD, Pyle JA, Sauvage B, van Velthoven P, Schlager H, Mari C, Cammas J-P (2010) Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study. Atmos Chem Phys 10:5719–5738. doi:10.5194/acp-10-5719-2010 CrossRefGoogle Scholar
  5. Berglen T, Myhre G, Ivar SA, Isaksen V, Vestreng SS (2007) Sulphate trends in Europe: are we able to model the recent observed decrease? Tellus 59B:773–786Google Scholar
  6. Bicheron P, Leroy M, Brockmann C, Krämer U, Miras B, Huc M, Niño F, Defourny P, Vancutsem C, Arino O, Ranera F, Petit D, Amberg V, Berthelot B, Gross D (2006) Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. In: Sobrino JA (ed) Proceeding of the Second International Symposium on recent advances in quantitative remote sensing. Servicio de Publicaciones. Universitat de Valencia, Valencia, pp 538–542Google Scholar
  7. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo J-H, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109:D14203CrossRefGoogle Scholar
  8. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Fernandes S, Trautmann N (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochemical Cycles 21:GB2018. doi:10.1029/2006GB002840 CrossRefGoogle Scholar
  9. Boschetti L, Eva HD, Brivio PA, Gregoire JM (2004) Lessons to be learned from the comparison of three satellite-derived biomass burning products. GRL 31:L21501CrossRefGoogle Scholar
  10. Chevallier F, Fortems A, Bousquet P, Pison I, Szopa S, Devaux M, Hauglustaine DA (2009) African CO emissions between years 2000 and 2006 as estimated from MOPITT observations. Biogeosciences 6:103–111. doi:10.5194/bg-6-103-2009 CrossRefGoogle Scholar
  11. Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment 41:8486–8499. doi:10.1016/j.atmosenv.2007.07.010 CrossRefGoogle Scholar
  12. Denier van der Gon H, Visschedijk HA, Kuenen J, van der Brugh H, Dröge R, Schaap M (2010) High resolution European emission grids for anthropogenic sources for the years 2003–2007, EGU 2010 special session Monitoring Atmospheric Composition and Climate, Geophysical Research Abstracts, Vol. 12, EGU2010-10800-1Google Scholar
  13. Etemad B, Bairoch P, Toutain J-C, Luciani J (1991) Production mondiale d’énergie 1800–1985. Genève, Librairie DrozGoogle Scholar
  14. Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Subregion (district) ans sector level SO2 and NOx emissions for India: assessment of inventories amd mitigation flexibility. Atmos Env 35:703–713CrossRefGoogle Scholar
  15. Garg A, Shukla PR, Kapshe M (2006) The sectoral trends of multigas emissions inventory of India. Atmospheric Environment, Elsevier Science 40(24):4608–4620Google Scholar
  16. Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186. doi:10.5194/bg-7-1171-2010 CrossRefGoogle Scholar
  17. Hollingsworth A, Engelen RJ, Textor C, Benedetti A, Boucher O, Chevallier F, Dethof A, Elbern H, Eskes H, Flemming J, Granier C, Morcrette JJ, Rayner P, Peuch V-H, Rouil L, Schultz M, Simmons A, the GEMS consortium (2008) The Global Earth-system Monitoring using Satellite and in-situ data (GEMS) project: towards a monitoring and forecasting system for atmospheric composition. Bull Amer Meteo Soc 89:1147–1164. doi:10.1175/2008BAMS2355.1 CrossRefGoogle Scholar
  18. IEA, International Energy Agency, World Energy Outlook 2009 (2009) ISBN 978-92-64-06130-9, available at http://www.iea.org
  19. Isaksen ISA, Granier C, Myhre G, Berntsen TK, Dalsoren SB, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T, Eyring V, Fowler D, Fuzzi S, Jockel P, Laj P, Lohmann U, Maione M, Monks P, Prevot ASH, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson DS, Storelvmo T, Wang W-C, van Weele M, Wild M, Wuebbles D (2009) Atmospheric composition change: climate-chemistry interactions. Atmospheric Environment 43(33, ACCENT Synthesis):5138–5172. doi:10.1016/j.atmosenv.2009.08.003 CrossRefGoogle Scholar
  20. Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem Cycles 19:GB2028. doi:10.1029/2004GB002374 CrossRefGoogle Scholar
  21. Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008 CrossRefGoogle Scholar
  22. Kaiser JW, Suttie M, Flemming J, Morcrette J-J, Boucher O, Schultz MG (2009) Global real-time fire emission estimates based on space-borne fire radiative power observations. AIP Conf Proc 1100:645–648. doi:10.1063/1.3117069 CrossRefGoogle Scholar
  23. Klimont Z, Cofala J, Xing J, Wei W, Zhang C, Wang S, Kejun J, Bhandari P, Mathura R, Purohit P, Rafaj P, Chambers A, Amann M, Hao J (2009) Projections of SO2, NOx, and carbonaceous aerosols emissions in Asia. Tellus B. doi:10.1111/j.1600-0889.2009.00428.x
  24. Kloster S, Mahowald NM, Randerson JT, Thornton PE, Hoffman FM, Levis S, Lawrence PJ, Feddema JJ, Oleson KW, Lawrence DM (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7:1877–1902CrossRefGoogle Scholar
  25. Kopacz M, Jacob DJ, Fisher JA, Logan JA, Zhang L, Megretskaia IA, Yantosca RM, Singh K, Henze DK, Burrows JP, Buchwitz M, Khlystova I, McMillan WW, Gille JC, Edwards DP, Eldering A, Thouret V, Nedelec P (2010) Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atoms Chem Phys 10:855–876CrossRefGoogle Scholar
  26. Kupiainen K, Klimont Z (2007) Primary emissions of fine carbonaceous particles in Europe. Atmospheric Environment 41(10):2156–2170. doi:10.1016/j.atmosenv.2006.10.06 CrossRefGoogle Scholar
  27. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10. doi:10.5194/acp-10-7017-2010, 7017-7039
  28. Lei Y, Zhang Q, He KB, Streets DG (2010) Primary aerosol emission trends for China, 1990–2005. Atmos Chem Phys Discuss 10:17153–17212. doi:10.5194/acpd-10-17153-2010 CrossRefGoogle Scholar
  29. Liousse C, Guillaume B, Grégoire JM, Mallet M, Galy C, Pont V, Akpo A, Bedou M, Castéra P, Dungall L, Gardrat E, Granier C, Konaré A, Malavelle F, Mariscal A, Mieville A, Rosset R, Serça D, Solmon F, Tummon F, Assamoi E, Yoboué V, Van Velthoven P (2010) Western african aerosols modelling with updated biomass burning emission inventories in the frame of the AMMA-IDAF program. Atmos Chem Phys Discuss 10:7347–7382. doi:10.5194/acpd-10-7347-2010 CrossRefGoogle Scholar
  30. Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque J-F, Grégoire J-M, Pétron G (2010) Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment 44:1469–1477CrossRefGoogle Scholar
  31. Mitchell BR (1992) International historical statistics, Europe, 1750–1988. Macmillan, 942 ppGoogle Scholar
  32. Moss RH, Edmonds JA, Hibbard K, Manning M, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson A, Weyant J, Wilbanks T (2010) The Next Generation of Scenarios for Climate Change Research and Assessment. Nature. doi:10.1038/nature08823
  33. Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1°x1° fire history reconstruction for the 20th century. Glob Chang Biol 11:398–420CrossRefGoogle Scholar
  34. Muller J-F, Stavrakou T (2005) Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmos Chem Phys 5:1157–1186CrossRefGoogle Scholar
  35. Novakov T, Ramanathan V, Hansen JE, Kirchstetter TW, Sato M, Sinton JE, Sathaye JA (2003) Large historical changes of fossil-fuel black car bon aerosols. Geophys Res Lett 30(6):1324. doi:10.1029/2002GL016345 CrossRefGoogle Scholar
  36. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics 7:4419–4444CrossRefGoogle Scholar
  37. Olivier JGJ, Berdowski JJM (2001) Global emissions sources and sinks. In: Berdowski J, Guicherit R, Heij BJ (eds) The climate system, pp 33–78. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands. ISBN 90 5809 255 0Google Scholar
  38. Olivier JGJ, Van Aardenne JA, Dentener F, Ganzeveld L, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources. Environ Sci, 2 (2–3):81–99. doi:10.1080/15693430500400345 Google Scholar
  39. Parrish DD (2006) Critical evaluation of US on-road vehicle emission inventories. Atmos Environ 40:2288–2300. doi:10.1016/j.atmo-senv.2005.11.033 CrossRefGoogle Scholar
  40. Petron G, Granier C, Khattatov B, Yudin V, Lamarque JF, Emmons L, Gille J, Edwards DP (2004) Monthly CO surface sources inventory based on the 2000–2001 MOPITT satellite data. Geophys Res Lett 31:L21107. doi:10.1029/2004GL020560 CrossRefGoogle Scholar
  41. Schöpp W, Klimont Z, Suutari R, Cofala J (2005) Uncertainty analysis of emission estimates in the RAINS integrated assessment model. Environmental Science and Policy 8:601–635CrossRefGoogle Scholar
  42. Schultz M, Rast S, van het Bolscher M, Pulles T, Pereira J, Spessa A, Dalsøren S, van Nojie T, Szopa S (2007) REanalysis of the TROpospheric chemical composition over the past 40 years, A long-term global modeling study of tropospheric chemistry funded under the 5th EU framework programme. Tech. rep., EU-Contract No. EVK2-CT-2002-00170, http://www.retro.enes.org/reports/D1-6final.pdf
  43. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer J, Held AC, Pereira JM (2008) Global emissions from wildland fires from 1960 to 2000. Global Biogeochem Cycles 22:GB2002. doi:10.1029/2007GB003031 CrossRefGoogle Scholar
  44. Smith SJ, Andres R, Conception E, Lurz J (2004) Sulfur Dioxide Emissions: 1850–2000 (JGCRI Report. PNNL-14537)Google Scholar
  45. Smith SJ, van Aardenne J, Klimont Z, Andres R, Volke A, Delgado Arias S (2010) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys Discuss 10:16111–16151. doi:10.5194/acpd-10-16111-2010 CrossRefGoogle Scholar
  46. Stern, D.I. (2006) Reversal of the trend in global anthropogenic sulfur emissions, Global Environ Change, 16:207–220CrossRefGoogle Scholar
  47. Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809. doi:10.1029/2002JD003093 CrossRefGoogle Scholar
  48. Streets DG, Bond TC, Lee T, Jang C (2004) On the future of carbonaceous aerosol emissions. J Geophys Res 109(D24):D24212. doi:10.1029/2004JD004902 CrossRefGoogle Scholar
  49. Streets D, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T, Shi G (2008) Aerosol trends over China, 1980–2000. Aerosol Res 88:174–182Google Scholar
  50. Stroppiana D, Brivio PA, Grégoire J-M, Liousse C, Guillaume B, Granier C, Mieville A, Chin M, Pétron G (2010) Comparison of global inventories of monthly CO emissions derived from remotely sensed data. Atmos Chem Phys Discuss 10:17657–17697. doi:10.5194/acpd-10-17657-2010 CrossRefGoogle Scholar
  51. Tanimoto H, Sawa Y, Yonemura S, Yumimoto K, Matsueda H, Uno I, Hayasaka T, Mukai H, Tohjima Y, Tsuboi K, Zhang L (2008) Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data. Atmos Chem Phys 8:3867–3880. doi:10.5194/acp-8-3867-2008 CrossRefGoogle Scholar
  52. Tansey K, Gregoire JMC, Defourny P, Leigh R, Pekel J-F, van Bogaert E, Bartholomé E, Bontemps S (2008) A new, global, multi-annual (2000–2007) burned area product at 1 km resolution and daily intervals. Geophys Res Lett 35:L01401, doi:10.1029/2007GL031567
  53. Taylor KE, Stouffer RJ, Meehl GA (2008) A Summary of the CMIP5 Experiment Design, https://cmip.llnl.gov/cmip5/docs/Taylor_CMIP5_dec31.pdf
  54. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 21:GB4018. doi:1029/2006GB002868 CrossRefGoogle Scholar
  55. Tummon F, Solmon F, Liousse C, Tadross M (2010) Simulation of the climatic impacts of the natural aerosol loading over southern Africa during the biomass burning season using RegCM3, accepted for publication in. J Geophys ResGoogle Scholar
  56. UNFCCC, Updated UNFCCC reporting guidelines on annual inventories (2006) FCCC/SBSTA/2006/9, available at: http://unfccc.int/resource/docs/2006/sbsta/eng/09.pdf.
  57. UNSTAT (1997) The United Nations energy statistics database, Tech. rep., Stat. Div., New YorkGoogle Scholar
  58. US Environmental Protection Agency (2001) Procedures document for National Emissions Inventory, Criteria Air Pollutants, 1985–1999. Tech. rep., EPA-454/R-01-006, US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA. Available at http://www.epa.gov/ttn/chief/trends/
  59. van Aardenne JA, Dentener FJ, Olivier JGJ, Klein Goldewijk CGM, Lelieveld J (2001) A 1 × 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochemical Cycles 15(4):909–928CrossRefGoogle Scholar
  60. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6:3423–3441CrossRefGoogle Scholar
  61. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys Discuss 10:16153–16230. doi:10.5194/acpd-10-16153-2010 CrossRefGoogle Scholar
  62. Van Vuuren DP, Edmonds J, Thomson A, Riahi K, Kainuma M, Matsui T, Hurtt GC, Lamarque J-F, Meinshausen M, Smith S, Granier C, Rose SK, Hibbard KA (2011) Representative Concentration Pathways: an overview. Climatic Change. This Issue. doi:10.1007/s10584-011-0148-z
  63. Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681CrossRefGoogle Scholar
  64. Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. JGR 110:D24311CrossRefGoogle Scholar
  65. Xu Y, Williams RH, Socolow RH (2009) China’s rapid deployment of SO2 scrubbers. Energy Environ Sci 2:459–465CrossRefGoogle Scholar
  66. Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D, Duan L, Lei Y, Wang LT, Yao ZL (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. doi:10.5194/acp-9-5131-2009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Claire Granier
    • 1
    • 2
    • 3
    • 4
  • Bertrand Bessagnet
    • 5
  • Tami Bond
    • 6
  • Ariela D’Angiola
    • 1
  • Hugo Denier van der Gon
    • 7
  • Gregory J. Frost
    • 2
    • 3
  • Angelika Heil
    • 8
  • Johannes W. Kaiser
    • 9
  • Stefan Kinne
    • 4
  • Zbigniew Klimont
    • 10
  • Silvia Kloster
    • 4
  • Jean-François Lamarque
    • 11
  • Catherine Liousse
    • 12
  • Toshihiko Masui
    • 13
  • Frederik Meleux
    • 5
  • Aude Mieville
    • 12
  • Toshimasa Ohara
    • 13
  • Jean-Christophe Raut
    • 1
  • Keywan Riahi
    • 10
  • Martin G. Schultz
    • 8
  • Steven J. Smith
    • 14
  • Allison Thompson
    • 14
  • John van Aardenne
    • 15
  • Guido R. van der Werf
    • 16
  • Detlef P. van Vuuren
    • 17
    • 18
  1. 1.UPMC University Paris 06, UMR8190, CNRS/INSU, LATMOS-IPSLParisFrance
  2. 2.NOAA Earth System Research LaboratoryBoulderUSA
  3. 3.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  4. 4.Max Planck Institute for MeteorologyHamburgGermany
  5. 5.INERISVerneuil-en-HalatteFrance
  6. 6.University of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.TNO Built Environment and GeosciencesUtrechtThe Netherlands
  8. 8.Forschungszentrum JuelichJuelichGermany
  9. 9.European Centre for Medium-Range Weather ForecastsReadingUK
  10. 10.International Institute for Applied Systems AnalysisLaxenburgAustria
  11. 11.National Center for Atmospheric ResearchBoulderUSA
  12. 12.Laboratoire d’AérologieToulouseFrance
  13. 13.National Institute for Environmental StudiesTsukubaJapan
  14. 14.Pacific Northwest National LaboratoryCollege ParkUSA
  15. 15.European Environment AgencyCopenhagenDenmark
  16. 16.VU University AmsterdamAmsterdamThe Netherlands
  17. 17.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  18. 18.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations