Climatic Change

, 109:59

An emission pathway for stabilization at 6 Wm−2 radiative forcing

  • Toshihiko Masui
  • Kenichi Matsumoto
  • Yasuaki Hijioka
  • Tsuguki Kinoshita
  • Toru Nozawa
  • Sawako Ishiwatari
  • Etsushi Kato
  • P. R. Shukla
  • Yoshiki Yamagata
  • Mikiko Kainuma
Article

Abstract

Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm−2) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO2 and N2O, are downscaled to facilitate transfer to climate models.

References

  1. Dimaranan BV (Ed) (2006) Global trade, assistance, and production: the GTAP 6 data base. Center for Global Trade Analysis, Purdue UniversityGoogle Scholar
  2. D. P. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J-F Lamarque, T. Matsui, M. Meinshausen, N. Nakicenovic, S. J. Smith and S. K. Rose (2011). The representative concentration pathways: an overview. Climatic Change. This issue. doi:10.1007/s10584-011-0148-z
  3. Grubler A, O’Neill B, Riahi K, Chirkov V, Goujon A, Kolp P, Prommer I, Scherbov S, Slentoe E (2007) Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol Forecast Soc Chang 74:980–1029CrossRefGoogle Scholar
  4. Hijioka Y et al (2008) Global GHG emission scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108Google Scholar
  5. Hoelzemann J et al (2004) Global Wildland Fire Emission Model (GWEM): evaluating the use of global area burnt satellite data. J Geophys Res 109. doi:10.1029/2003JD003666
  6. Houghton et al (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol Monogr 53:235–262CrossRefGoogle Scholar
  7. Hurtt G et al (2011) Land use change and earth system dynamics. Clim Chang this volumeGoogle Scholar
  8. International Energy Agency (2007a) Energy balances of OECD countries (2007 Edition), IEAGoogle Scholar
  9. International Energy Agency (2007b) Energy balances of Non-OECD countries (2007 Edition), IEAGoogle Scholar
  10. International Energy Agency (2008) World energy outlook 2008, IEAGoogle Scholar
  11. Ito A (2005) Climate-related uncertainties in projections of the twenty-first century terrestrial carbon budget: off-line model experiments using IPCC greenhouse-gas scenarios and AOGCM climate projections. Clim Dyn 24:435–448CrossRefGoogle Scholar
  12. Ito A (2010) Changing ecophysiological processes and carbon budget in East Asian ecosystems under near–future changes in climate: implications for long–term monitoring from a process–based model. J Plant Res 123:577–588CrossRefGoogle Scholar
  13. Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151:143–176CrossRefGoogle Scholar
  14. Kainuma M, Matsuoka Y, Morita T (eds) (2002) Climate policy assessment. SpringerGoogle Scholar
  15. Kaya Y (1989) Impact of carbon dioxide emission control on GNP Growth: interpretation of proposed scenarios, presentation to the energy and industry subgroup, response strategies working group. Intergovernmental Panel on Climate Change, Paris, mimeoGoogle Scholar
  16. Kinoshita T et al (forthcoming) Methodology of spatial explicit scenario for representative concentration pathways, center for global environment research report, geographical distribution dataset is available at http://www-iam.nies.go.jp/aim/rcp
  17. Klein Goldewijk K, Beusen A, de Vos M, van Drecht G (2011) The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86CrossRefGoogle Scholar
  18. Lamarque J-F et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys Discuss 10:4963–5019CrossRefGoogle Scholar
  19. Leff B, Ramankutty N, Foley J (2004) Geographic distribution of major crops across the world. Glob Biogeochem Cycles 18:GB1009. doi:10.1029/2003GB002108 CrossRefGoogle Scholar
  20. Masui T (2011) Integration of a low-carbon society with a resource-circulating and nature-harmonious society. In: Sumi A et al (eds) Climate change and global sustainability: a holistic approach. United Nations University Press, 258–277Google Scholar
  21. Masui T et al (2009) Emission pathway for 6 W/m2, presentation material for IAMC Meeting, http://www-iam.nies.go.jp/aim/iamc09/pdf/090915_022_Masui.pdf
  22. Masui T et al (2010) Analysis of 4.5 W/m2 stabilization scenarios with renewable energies and advanced technologies using AIM/CGE [Global] model, http://www-iam.nies.go.jp/aim/reports_html/rpt/2010/cge_4.5 W.pdf
  23. Matsumoto K, Masui T (2010) Economic implications of avoiding dangerous climate change: an analysis using the AIM/CGE [Global] model. J Environ Sci Eng 4(7):76–83Google Scholar
  24. Metz B et al (eds) (2007) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University PressGoogle Scholar
  25. Monfreda et al (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles 22:GB1022CrossRefGoogle Scholar
  26. Moss R et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132Google Scholar
  27. Moss R et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:11. doi:10.1038/nature08823 CrossRefGoogle Scholar
  28. Nakicenovic N, Swart R (eds) (2000) Special Report on Emissions Scenarios (SRES). Cambridge University PressGoogle Scholar
  29. Rogner H (1997) An assessment of world hydrocarbon resources. Ann Rev Energy Environ 22:217–262CrossRefGoogle Scholar
  30. Thonicke K et al (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob Ecol Biogeogr 10:661–677CrossRefGoogle Scholar
  31. United Nations (2004) World population to 2300. Population Division, Department of Economic and Social Affairs, United NationsGoogle Scholar
  32. United Nations (2005) World urbanization prospects: the 2005 revision. Population Division, Department of Economic and Social Affairs, United NationsGoogle Scholar
  33. United Nations (2007) World population prospects the 2006 revision, population division. Department of Economic and Social Affairs, United NationsGoogle Scholar
  34. United Nations Development Programme (2002) Human development report, deepening democracy in a fragmented world. Oxford University Press, New YorkGoogle Scholar
  35. United Nations Environment Programme (2002) Global environment outlook 3. EarthscanGoogle Scholar
  36. United Nations Environment Programme (2007) Global environment outlook 4. Progress PressGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Toshihiko Masui
    • 1
  • Kenichi Matsumoto
    • 1
  • Yasuaki Hijioka
    • 1
  • Tsuguki Kinoshita
    • 2
  • Toru Nozawa
    • 1
  • Sawako Ishiwatari
    • 1
  • Etsushi Kato
    • 3
  • P. R. Shukla
    • 4
  • Yoshiki Yamagata
    • 1
  • Mikiko Kainuma
    • 1
  1. 1.National Institute for Environmental StudiesTsukubaJapan
  2. 2.Ibaraki UniversityAmiJapan
  3. 3.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  4. 4.Indian Institute of Management, AhmedabadAhmedabadIndia

Personalised recommendations