Climatic Change

, Volume 109, Issue 3–4, pp 319–329 | Cite as

Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change?

  • Sabrina KumschickEmail author
  • Stefan Fronzek
  • Martin H. Entling
  • Wolfgang Nentwig


Numerous species are expanding their ranges towards the North Pole, a pattern that is usually explained with climate change. However, few studies have actually tested the potential role of climate in such range expansions. Here, we studied the wasp spider Argiope bruennichi, which has multiplied its range in Central and Northern Europe during the 20th century and is still spreading. Using current and historical climate data, we analysed whether this spread can be explained by climate warming, increasing cold tolerance or if it is unrelated to temperature. Spatial partial regression showed that the spread of A. bruennichi into formerly cooler areas is independent of spatial autocorrelation, indicating that it is driven by temperature. Some aspects of the spread, as e.g. the patchy distribution at the beginning of the century are likely to be relicts of climate fluctuations before our study period. From the middle of the 20th century until the 1980s, A. bruennichi was recorded from gradually cooler climates, while temperature was relatively constant. This indicates that A. bruennichi either increased its cold tolerance or that the spread continued with a time lag following an earlier warming event, due to dispersal limitation. In the last two decades, temperature rose sharply. The temperatures at which A. bruennichi was newly recorded increased as well, indicating that the spider is dispersal limited and that the spread will continue even in the absence of further climate warming.


Grid Cell Spatial Autocorrelation Climate Warming Cold Tolerance Climate Research Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Nikolaj Scharff and an anonymous reviewer for helpful comments on the manuscript. Many thanks to ARABEL, ARAGES, CSCF, Aloysius Staudt, Christian Komposch, Christo Deltshev, Csaba Szinetár, David Roy, Frederick Hendrickx, Holger Frick, Ioan Duma, Katarzyna Zieba, Koen van Keer, Lars Jonsson, Maria Chatzaki, Marija Biteniekyte, Niclas Fritzén, Nikolaj Scharff, Nina Polchaninova, Peter van Helsdingen, Piet Tutelaer, Robert Bosmans, Róbert Gallé, Seppo Koponen, Voldemars Spungis, Walter Egger, Wojciech Solarz, Zuzana Krumpalova for providing valuable literature and data. Special thanks to Christian Kropf for his help in searching literature. We acknowledge financial support from the EC through the FP 6 Integrated Project ALARM (Assessing LArge scale environmental Risks for biodiversity with tested Methods; GOCE-CT-2003-506675;; Settele et al. 2005).

Supplementary material

10584_2011_139_MOESM1_ESM.doc (520 kb)
ESM 1 (DOC 519 kb)


  1. Andersen NM, Enghoff H (1993) Stribetæge og hvepseedderkop—flotte nye danske dyrearter. Dyr I Natur og Museum 1:11–13Google Scholar
  2. Buchar J, Růžička V (2002) Catalogue of spiders of the Czech Republic. Peres Publishers, PrahaGoogle Scholar
  3. Davis MB (1976) Pleistocene biogeography of temperate deciduous forest. Geosci Man 13:13–26Google Scholar
  4. Egger W (1995) Neues zum Vorkommen der Wespenspinne Argiope bruennichi (Scopoli) in Kärnten. Carinthia II 185:201–204Google Scholar
  5. European Environment Agency (2004) Impacts of Europe’s changing climate. European Environment Agency Report no. 2 (
  6. Fang JY, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819CrossRefGoogle Scholar
  7. Guttmann R (1979) Zur Arealentwicklung und Ökologie der Wespenspinne (Argiope bruennichi) in der Bundesrepublik Deutschland und den angrenzenden Ländern (Araneae). Bonn Zool Beitr 30:454–486Google Scholar
  8. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefGoogle Scholar
  9. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  10. Intergovernmental Panel on Climate Change (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  11. Jonsson LJ (2004) Getingspindeln, Argiope bruennichi, etablerad och sprider sig norrut i Sverige. Entomologisk Tidskrift 125:117–120Google Scholar
  12. Jonsson LJ, Wilander P (1999) Är getingspindeln, Argiope bruennichi, etablerad i Sverige? Entomologisk Tidskrift 120:17–21Google Scholar
  13. Köhler G, Schäller G (1987) Untersuchungen zur Phönologie und Dormanz der Wespenspinne Argiope bruennichi (Scopoli) (Araneae: Araneidae). Zool Jb Syst 114:65–82Google Scholar
  14. Kritscher E (1955) Araneae. In: Catalogus Faunae Austriae, Teil IX b: 1–56. WienGoogle Scholar
  15. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  16. Mikolaskova K (2009) A regression evaluation of thermal continentality. Geografie 114:350–362Google Scholar
  17. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  18. Nentwig W (2005) Humanökologie. Springer, HeidelbergGoogle Scholar
  19. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  20. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  21. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  22. R Development Core Team (2007) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  23. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an Integrated Computational Tool for Spatial Analysis in Marcoecology and Biogeography. Glob Ecol Biogeogr 15:321–327CrossRefGoogle Scholar
  24. Řezáč M, Řezáčová V, Pekár S (2007) The distribution of purse-web Atypus spiders (Araneae: Mygalomorphae) in central Europe is constrained by microclimatic continentality and soil compactness. J Biogeogr 34:1016–1027CrossRefGoogle Scholar
  25. Scharff N, Langemark S (1997) Hvepseedderkoppen, Argiope bruennichi (Scopoli), i Danmark (Araneae; Araneidae) [Argiope bruennichi (Scopoli) in Denmark (Araneae; Araneidae)]. Entomologiske Meddelelser 65(4):179–182Google Scholar
  26. Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kühn I (2005) ALARM—Assessing LArge-scale environmental Risks for biodiversity with tested Methods. Gaia 14:69–72Google Scholar
  27. Svenning JC, Skov F (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol Lett 10:453–460CrossRefGoogle Scholar
  28. Svenning JC, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–326CrossRefGoogle Scholar
  29. van Helsdingen PJ (2007) De Wespspin Argiope bruennichi in Nederland. from
  30. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  31. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69CrossRefGoogle Scholar
  32. Wiehle H (1931) Araneidae. Tierwelt Deutschlands 23:1–136Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sabrina Kumschick
    • 1
    Email author
  • Stefan Fronzek
    • 2
  • Martin H. Entling
    • 1
  • Wolfgang Nentwig
    • 1
  1. 1.Institute of Ecology and Evolution, Community EcologyUniversity of BernBernSwitzerland
  2. 2.Finnish Environment Institute, Research Programme for Global ChangeHelsinkiFinland

Personalised recommendations