Climatic Change

, Volume 110, Issue 3–4, pp 845–878 | Cite as

Potential climatic transitions with profound impact on Europe

Review of the current state of six ‘tipping elements of the climate system’
  • Anders LevermannEmail author
  • Jonathan L. Bamber
  • Sybren Drijfhout
  • Andrey Ganopolski
  • Winfried Haeberli
  • Neil R. P. Harris
  • Matthias Huss
  • Kirstin Krüger
  • Timothy M. Lenton
  • Ronald W. Lindsay
  • Dirk Notz
  • Peter Wadhams
  • Susanne Weber


We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding.


Polar Vortex Mountain Glacier Surface Mass Balance Alpine Glacier Stratospheric Water Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Change 14:31–52CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla Ch, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2006) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46CrossRefGoogle Scholar
  3. Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324(5929):901–903CrossRefGoogle Scholar
  4. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31CrossRefGoogle Scholar
  5. Born A, Levermann A (2010) The 8ka event: abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem Geophys Geosyst 11:Q06011CrossRefGoogle Scholar
  6. Braithwaite RJ, Raper SCB (2002) Glaciers and their contribution to sea level change. Phys Chem Earth 27(32–34):1445–1454Google Scholar
  7. C.Amstrup S, DeWeaver ET, Douglas DC, Marcot BG, Durner GM, Bitz CM, Bailey DA (2010) Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468:955–960CrossRefGoogle Scholar
  8. CAPE-Last Interglaicial Project Members (2006) Last interglacial Arctic warmth confirms polar amplification of climate change. Quat Sci Rev 25:1383–1400CrossRefGoogle Scholar
  9. Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862CrossRefGoogle Scholar
  10. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602CrossRefGoogle Scholar
  11. Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869CrossRefGoogle Scholar
  12. Cogley G (2009) Geodetic and direct mass balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100CrossRefGoogle Scholar
  13. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703CrossRefGoogle Scholar
  14. Dameris M, Grewe V, Hein R, Schnadt C (1998) Assessment of the future development of the ozone layer. Geophys Res Lett 25:3579–3582CrossRefGoogle Scholar
  15. Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing 1979–2007. Geophys Res Lett 35:L02504CrossRefGoogle Scholar
  16. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J T (2002) Rapid freshening of the deep North Altantic Ocean over the past four decades. Nature 416:832–837CrossRefGoogle Scholar
  17. Drijfhout SS, Weber SL, van der Swaluw E (2010) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn. doi: 10.1007/s00382-010-0930-z Google Scholar
  18. Eckhardt K, Ulbrich U (2005) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252CrossRefGoogle Scholar
  19. Eisenmann I, Wettlaufer JS (2009) Nonlinear threshold behavior during the loss of Arctic sea ice. Proc Natl Acad Sci 106(1):28–32CrossRefGoogle Scholar
  20. Evans SJ, Toumi R, Harris JE, Chipperfield MP, Russell JM (1998) Trends in stratospheric humidity and the sensitivity of ozone to these trends. J Geophys Res 103:8715–8725CrossRefGoogle Scholar
  21. Farinotti D, Huss M, Bauder A, Funk M (2009) An estimate of the glacier ice volume in the the Swiss Alps. Glob Planet Change 68(3):225–231CrossRefGoogle Scholar
  22. Forster PM, Shine KP (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys Res Lett 29(6). doi: 10.1029/2001GL013909 Google Scholar
  23. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  24. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefGoogle Scholar
  25. Goosse H, Arzel O, Bitz CM, de Montety A, Vancoppenolle M (2009) Increased variability of the Arctic summer ice extent in a warmer climate. Geophys Res Lett 36:L23702CrossRefGoogle Scholar
  26. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706CrossRefGoogle Scholar
  27. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1731CrossRefGoogle Scholar
  28. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703CrossRefGoogle Scholar
  29. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18CrossRefGoogle Scholar
  30. Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne J-L, Rigor I (2008) Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophys Res Lett 35:L17501CrossRefGoogle Scholar
  31. Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212Google Scholar
  32. Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160CrossRefGoogle Scholar
  33. Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171CrossRefGoogle Scholar
  34. Harris NR P, Kyrö E, Staehelin J, Brunner D, Andersen S-B, Godin-Beekmann S, Dhomse S, Hadjinicolaou P, Hansen G, Isaksen I, Jrrar A, Karpetchko A, Kivi R, Knudsen B, Krizan P, Lastovicka J, Maeder J, Orsolini Y, Pyle JA, Rex M, Vanicek K, Weber M, Wohltmann I, Zanis P, Zerefos C (2008) Ozone trends at northern mid- and high latitudes—a European perspective. Ann Geophys 26:1207–1220CrossRefGoogle Scholar
  35. Hattermann T, Levermann A (2010) Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica. Clim Dyn 35:741–756CrossRefGoogle Scholar
  36. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the atlantic subpolar gyre on the thermohaline circulation. science 309:1841–1844CrossRefGoogle Scholar
  37. Hock R, Jansson P, Braun L (2005) Modelling the response of mountain glacier discharge to climate warming. In: Global change series. Springer, New York, pp 243–252Google Scholar
  38. Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Change 36(4):295–306CrossRefGoogle Scholar
  39. Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci 106(49):20584–20589CrossRefGoogle Scholar
  40. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1(10):659–664CrossRefGoogle Scholar
  41. Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503CrossRefGoogle Scholar
  42. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously could Eurasian winters. Geophys Res Lett 36:L08707CrossRefGoogle Scholar
  43. Hu A, Meehl GA, Han W, Yin J (2009) The deep-ocean heat uptake in transient climate change. Geophys Res Lett 36:L10707CrossRefGoogle Scholar
  44. Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22(19):3888–3902CrossRefGoogle Scholar
  45. Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36:L23501CrossRefGoogle Scholar
  46. Huss M, Hock R, Bauder A, Funk M (2010) 100-year glacier mass changes in the Swiss Alps linked to the Atlantic multidecadal oscillation. Geophys Res Lett 37:L10501CrossRefGoogle Scholar
  47. Huybrechts P, Letreguilly A, Reeh N (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Change 83. doi: 10.1016/j.gloplacha.2003.11.011 Google Scholar
  48. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Chap. PalaeoclimateGoogle Scholar
  49. Jones A, Urban J, Murtagh DP, Eriksson P, Brohede S, Haley C, Degenstein D, Bourassa A, von Savigny C, Sonkaew T, Rozanov A, Bovensmann H, Burrows J (2009) Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos Chem Phys 9:6055–6075CrossRefGoogle Scholar
  50. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–611CrossRefGoogle Scholar
  51. Joughin I, Tulaczyk S, Bamber JL, Blankenship D, Holt J, Scambos T, Vaughan D (2009) Basal conditions for Pine Island and Thwaites Glaciers determined using satellite and airborne data. J Glaciol 55(190):245–257CrossRefGoogle Scholar
  52. Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439CrossRefGoogle Scholar
  53. Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708CrossRefGoogle Scholar
  54. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33(19):L19501CrossRefGoogle Scholar
  55. Kattsov VM, Källén E (2004) Future climate change: modeling and scenarios for the Arctic. Cambridge University Press, Cambridge. Google Scholar
  56. Kay JE, L’Ecuyer T, Gettelman A, Stephens G, O’Dell C (2008) The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys Res Lett 35:L08503CrossRefGoogle Scholar
  57. Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapor. Nature 402:399–401CrossRefGoogle Scholar
  58. Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Change 103(3–4):619–625CrossRefGoogle Scholar
  59. Kriegler E, Hall J, Held H, Dawson R, Schellnhuber HJ (2009) Imprecise probability assessment of tipping points in the climate system. Proc Natl Acad Sci 106(13):5041–5046CrossRefGoogle Scholar
  60. Kuhlbrodt T, Rahmstorf S, Zickfeld K, Vikebo FB, Sundby S, Hofmann M, Link PM, Bondeau A, Cramer W, Jaeger C (2009) An integrated assessment of changes in the thermohaline circulation. Clim Change 96:489–537CrossRefGoogle Scholar
  61. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  62. Lashof DA (1989) The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim Change 14:213–242CrossRefGoogle Scholar
  63. Laurian A, Drijfhout SS, Hazeleger W, Hurk B (2009) Response of the Western European climate to a collapse of the thermohaline circulation. Clim Dyn 34(5):689–697CrossRefGoogle Scholar
  64. Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401CrossRefGoogle Scholar
  65. Le Meur E, Gerbaux M, Schäfer M, Vincent C (2007) Disappearance of an Alpine glacier over the 21st century simulated from modeling its future surface mass balance. Earth Planet Sci Lett 261:367–374CrossRefGoogle Scholar
  66. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793CrossRefGoogle Scholar
  67. Lenton TM, Footitt A, Dlugolecki A (2009) Major Tipping Points in the Earth’s climate system and consequences for the insurance sector. Tech rept, WWF & Allianz.
  68. Levermann A, Born A (2007) Bistability of the subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34:L24605CrossRefGoogle Scholar
  69. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  70. Levermann A, Mignot J, Nawrath S, Rahmstorf S (2007) The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J Clim 20:4160–4171CrossRefGoogle Scholar
  71. Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Natl Acad Sci 106(49):20572–20577CrossRefGoogle Scholar
  72. Lindsay R, Zhang J, Schweiger A, Steele M, Stern H (2009) Arctic Sea ice retreat in 2007 follows thinning trend. J Climate 22:165–176CrossRefGoogle Scholar
  73. Loeng H (2004) Marine systems. Cambridge University Press, Cambridge.
  74. Manney G, Krüger K, Pawson S, Schwartz M, Daffer W, Mlynczak M, Livesey N, Remsberg E, Russell J III, Waters J (2005) The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J Geophys Res 110:D04107CrossRefGoogle Scholar
  75. Manney G, Krüger K, Pawson S, Schwartz M, Daffer W, Mlynczak M, Livesey N, Remsberg E, Russell J III, Waters J (2008) The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses. J Geophys Res 113:D11115CrossRefGoogle Scholar
  76. Manney G, Schwartz M, Krüger K, Santee M, Pawson S, Lee J, Daffer W, Fuller R, Livesey N (2009) Aura microwave limb sounder observations of dynamics and transport during the record-breaking. Geophys Res Lett 36:L12815CrossRefGoogle Scholar
  77. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711CrossRefGoogle Scholar
  78. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  79. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  80. Meier MF, Dyurgerov MB, Rick UK, ÓNeel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(Aug):1064CrossRefGoogle Scholar
  81. Miller JR, Russell GL (2000) Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys Res Lett 27:1183–1186CrossRefGoogle Scholar
  82. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  83. Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, Deconto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(Mar):322–328CrossRefGoogle Scholar
  84. Noetzli J, Gruber S (2009) Transient thermal effects in Alpine permafrost. The Cryosphere 3:85–99CrossRefGoogle Scholar
  85. Notz D (2009) The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20590–20595CrossRefGoogle Scholar
  86. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:241–244CrossRefGoogle Scholar
  87. Oerlemans J, Dyurgerov M, van de Wal RSW (2007) Reconstructing the glacier contribution to sea-level rise back to 1850. The Cryosphere 1:59–65CrossRefGoogle Scholar
  88. Oerlemans J, Giessen RH, van den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J Glaciol 55(192):729–736CrossRefGoogle Scholar
  89. Ogi M, Rigor IG, McPhee MG, Wallace JM (2008) Summer retreat of Arctic sea ice: role of summer winds. Geophys Res Lett 35:L24701CrossRefGoogle Scholar
  90. Oltmans SJ, Hofmann DJ (1995) Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981–1994. Nature 374:146–149CrossRefGoogle Scholar
  91. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311(5768):1747–1750CrossRefGoogle Scholar
  92. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20836CrossRefGoogle Scholar
  93. Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502CrossRefGoogle Scholar
  94. Paul F, Machguth H, Kääb A (2005) On the impact of glacier albedo under conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL eProc 4(2):139–149Google Scholar
  95. Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501CrossRefGoogle Scholar
  96. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111CrossRefGoogle Scholar
  97. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343CrossRefGoogle Scholar
  98. Pollard D, Deconto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(Mar):329–332CrossRefGoogle Scholar
  99. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975CrossRefGoogle Scholar
  100. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  101. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214CrossRefGoogle Scholar
  102. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  103. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh B, Mysak LA, Wang Z, Weaver A (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605CrossRefGoogle Scholar
  104. Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709CrossRefGoogle Scholar
  105. Randel WJ, Wu F, Oltmans SJ, Rosenlof K, Nedoluha G (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61:2133–2148CrossRefGoogle Scholar
  106. Rex M, Salawitch RJ, Harris NRP, Braathen GO, Schulz A, Deckelmann H, Chipperfield M, Sinnhuber BM, Reimer E, Alfier R, Bevilacqua R, Hoppel K, Fromm M, Lumpe J, Küllmann H, Kleinböhl A, Bremer H, von König M, Künzi K, Toohey D, Vömel H, Richard E, Aikin K, Jost H, Greenblatt JB, Loewenstein M, Podolske JR, Webster CR, Flesch GJ, Scott DC, Herman RL, Elkins JW, Ray EA, Moore FL, Hurst DF, Romashkin P, Toon GC, Sen B, Margitan JJ, Wennberg P, Neuber R, Allart M, Bojkov RB, Claude H, Davies J, Davies W, deBacker H, Dier H, Dorokhov V, Fast H, Kondo Y, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MJ, Moran E, Murphy G, Nagai T, Nakane H, Parrondo C, Ravegnani F, Skrivankova P, Viatte P, Yushkov V, von der Gathen P (2002) Chemical depletion of Arctic ozone in winter 1999/2000. J Geophys Res 107(D20):8276CrossRefGoogle Scholar
  107. Rex M, Salawitch RJ, von der Gathen P, Harris NRP, Chipperfield MP, Naujokat B (2004) Arctic ozone loss and climate change. Geophys Res Lett 31:L04116CrossRefGoogle Scholar
  108. Richardson K, Steffen W, Schellnhuber H-J, Alcamo J, Barker T, Kammen DM, Leemans R, Liverman D, Munasinghe M, Osman-Elasha B, Stern N, Waever O (2009). Synthesis report: climate change—global risks, challenges and decisions. Copenhagen, Denmark.
  109. Ridley J, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Climate 18:3409–3427CrossRefGoogle Scholar
  110. Ridley J, Gregory JM, Huybrechts P, Lowe JA (2010) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn. 35(6):1049–1057. doi: 10.1007/s00382-009-0646-0 CrossRefGoogle Scholar
  111. Rignot E (2001) Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. J Glaciol 47:213–222CrossRefGoogle Scholar
  112. Rignot E, Vaughan DG, Schmeltz M, Dupont T, Macayeal D (2002) Acceleration of Pine Island and Thwaites Glaciers, West Antarctica. Ann Glaciol 34:189–194CrossRefGoogle Scholar
  113. Rignot E, Bamber JL, Van den Broeke MR, Li Y, Davis C, Van de Berg WJ, Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110CrossRefGoogle Scholar
  114. Rignot EJ (1998) Fast recession of a West Antarctic Glacier. Science 281:549–551CrossRefGoogle Scholar
  115. Rosenlof KH, Oltmans SJ, Kley D, Russell JM, Chiou EW, Chu WP, Johnson DG, Kelly KK, Michelsen HA, Nedoluha GE, Remsberg EE, Toon GC, McCormick MP (2001) Stratospheric water vapor increases over the past half-century. Geophys Res Lett 28:1195–1198CrossRefGoogle Scholar
  116. Rothrock DA, Yu Y, Maykut G (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472CrossRefGoogle Scholar
  117. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic oscillation. J Climate 21:72–83CrossRefGoogle Scholar
  118. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci 11(3):1191–1205CrossRefGoogle Scholar
  119. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefGoogle Scholar
  120. Schellnhuber HJ (2009) Tipping elements in the Earth System. Proc Natl Acad Sci 106(49):20561–20563CrossRefGoogle Scholar
  121. Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) (2006) Avoiding dangerous climate change. Cambridge University Press, CambridgeGoogle Scholar
  122. Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B (1998) Pleistocene collapse of the West Antarctic Ice Sheet. Science 281:82–85CrossRefGoogle Scholar
  123. Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633CrossRefGoogle Scholar
  124. Schnadt C, Dameris M, Ponater M, Hein R, Grewe V, Steil B (2002) Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone. Clim Dyn 18:501–517Google Scholar
  125. Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112:F03S28CrossRefGoogle Scholar
  126. Shindell DT (2001) Climate and ozone response to increased stratospheric water vapor. Geophys Res Lett 28:1551–1554CrossRefGoogle Scholar
  127. Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462:342–345CrossRefGoogle Scholar
  128. Smedsrud LH, Sorteberg A, Kloster K (2008) Recent and future changes of the Arctic sea-ice cover. Geophys Res Lett 35:L20503CrossRefGoogle Scholar
  129. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean–atmosphere models. J Climate 19:3354–3360CrossRefGoogle Scholar
  130. Solomina O, Haeberli W, Kull C, Wiles G (2008) Historical and holocene glacier climate variations: general concepts and overview. Glob Planet Change 60:1–9CrossRefGoogle Scholar
  131. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316CrossRefGoogle Scholar
  132. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  133. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223CrossRefGoogle Scholar
  134. SPARC (2010) Report on the evaluation of chemistry–climate models. Tech rept 4, SPARC CCMValGoogle Scholar
  135. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06022CrossRefGoogle Scholar
  136. Stendel M, Christensen JH (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett 29(13):1632CrossRefGoogle Scholar
  137. Stick C, Krüger K, Schade NH, Sandmann H, Macke A (2006) Episode of unusual high solar ultraviolet radiation over central Europe due to dynamical reduced total ozone in May 2005. Atmos Chem Phys 6:1771–1776CrossRefGoogle Scholar
  138. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov AP, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Climate 19:1365–1387CrossRefGoogle Scholar
  139. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501CrossRefGoogle Scholar
  140. Tegtmeier S, Rex M, Wohltmann I, Krüger K (2008) Relative importance of dynamical and chemical contributions to Arctic wintertime ozone. Geophys Res Lett 35:L17801CrossRefGoogle Scholar
  141. Thompson DWJ, Wallace JM, Kennedy JJ, Jones PD (2010) An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467:444–447CrossRefGoogle Scholar
  142. Tietsche S, Notz D, Jungclaus JH, Marotzke J (2011) Recovery mechanisms of Arctic summer sea ice. Geophys Res Lett. 38:L02707. doi: 10.1029/2010GL045698 CrossRefGoogle Scholar
  143. Toniazzo T, Gregory JM, Huybrechts P (2004) Climatic impact of a Greenland deglaciation and its possible irreversibility. J Climate 17:21–33CrossRefGoogle Scholar
  144. van Oldenborgh GJ, Drijfhout SS, van Ulden A, Haarsma R, Sterl A, Severijns S, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12CrossRefGoogle Scholar
  145. Vaughan DG, Arthern R (2007) Why is it hard to predict the future of ice sheets? Science 315:1503–1504CrossRefGoogle Scholar
  146. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503CrossRefGoogle Scholar
  147. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  148. Vellinga M, Wood RA (2007) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63Google Scholar
  149. Vincent C (2002) Influence of climate change over the 20th century on four French glacier mass balances. J Geophys Res 107(4375):D19Google Scholar
  150. Wadhams P, Davis NR (2000) Further evidence of ice thinning in the Arctic Ocean. Geophys Res Lett 27(24):3973–3976CrossRefGoogle Scholar
  151. Wadhams P, Holfort J, Hansen E, Wilkinson JP (2002) A deep convective chimney in the winter Greenland Sea. Geophys Res Lett 29(10):1434CrossRefGoogle Scholar
  152. Wadhams P, Budeus G, Wilkinson JP, Loyning T, Pavlov V (2004) The multi-year development of long-lived convective chimneys in the Greenland Sea. Geophys Res Lett 31:L06306CrossRefGoogle Scholar
  153. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502CrossRefGoogle Scholar
  154. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093CrossRefGoogle Scholar
  155. Weatherhead B, Tanskanen A, Stevermer A (2004) Ozone and ultraviolet radiation. Cambridge University Press, Cambridge.
  156. Weber SL, Drijfhout SS (2007) Stability of the Atlantic meridional overturning circulation in the Last Glacial maximum climate. Geophys Res Lett 34:L22706CrossRefGoogle Scholar
  157. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past 3(1):51–64CrossRefGoogle Scholar
  158. Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13:3–11Google Scholar
  159. Weijer W, de Ruijter WPM, Dijkstra HA, Van Leeuwen PJ (1999) Impact of interbasin exchange on the Atlantic overturning circulation. J Phys Oceanogr 29:2266–2284CrossRefGoogle Scholar
  160. Wilkinson JP, Wadhams P (2003) A salt flux model for salinity change through 1138 ice production in the Greenland Sea, and its relationship to winter convection. J Geophys Res 108(C5):3147CrossRefGoogle Scholar
  161. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophys Res Lett 32:L23714CrossRefGoogle Scholar
  162. Winton M (2006a) Amplified Arctic climate change: what does surface albedo feedback have to do with it? Geophys Res Lett 33:L03701CrossRefGoogle Scholar
  163. Winton M (2006b) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33:L23504CrossRefGoogle Scholar
  164. WMO (2007) Scientific assessment of ozone depletion. Tech rept 50, World Meteorological OrganizationGoogle Scholar
  165. WMO (2011) Scientific assessment of ozone depletion. Global Ozone Research and Monitoring Project–Report 52. World Meteorological Organization, Geneva, SwitzerlandGoogle Scholar
  166. Yin J, Stouffer RJ (2007) Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J Climate 20:4293–4315CrossRefGoogle Scholar
  167. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266CrossRefGoogle Scholar
  168. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504CrossRefGoogle Scholar
  169. Zemp M, Roer I, Kääb A, Hoelzle M, Paul F, Haeberli W (eds) (2008) Global glacier changes: facts and figures. World Glacier Monitoring Service, UNEP, Zurich, SwitzerlandGoogle Scholar
  170. Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50(50):101–111CrossRefGoogle Scholar
  171. Zhang J, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505CrossRefGoogle Scholar
  172. Zickfeld K, Levermann A, Granger HM, Rahmstorf S, Kuhlbrodt T, Keith DW (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82:235–265CrossRefGoogle Scholar
  173. Zwierl B, Bugmann H (2005) Global change impacts on hydrological processes in Alpine catchments. Water Resour Res 41:1–13Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anders Levermann
    • 1
    • 2
    Email author
  • Jonathan L. Bamber
    • 3
  • Sybren Drijfhout
    • 4
  • Andrey Ganopolski
    • 1
  • Winfried Haeberli
    • 5
  • Neil R. P. Harris
    • 6
  • Matthias Huss
    • 7
  • Kirstin Krüger
    • 8
  • Timothy M. Lenton
    • 9
  • Ronald W. Lindsay
    • 10
  • Dirk Notz
    • 11
  • Peter Wadhams
    • 12
  • Susanne Weber
    • 4
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.University of PotsdamPotsdamGermany
  3. 3.University of BristolBristolUK
  4. 4.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  5. 5.University of ZurichZurichSwitzerland
  6. 6.European Ozone Research Coordinating Unit, Department of ChemistryCambridge UniversityCambridgeUK
  7. 7.University of FribourgFribourgSwitzerland
  8. 8.Leibniz Institute for Marine SciencesKielGermany
  9. 9.College of Life and Environmental SciencesUniversity of ExeterExeterUK
  10. 10.University of WashingtonSeattleUSA
  11. 11.Max-Planck-Institute for MeteorologyHamburgGermany
  12. 12.Department of Applied Mathematics and Theoretical PhysicsCambridge UniversityCambridgeUK

Personalised recommendations