Climatic Change

, Volume 110, Issue 3–4, pp 669–696

Global changes in extreme events: regional and seasonal dimension

Open Access
Article

Abstract

This study systematically analyzes the complete IPCC AR4 (CMIP3) ensemble of GCM simulations with respect to changes in extreme event characteristics at the end of the 21st century compared to present-day conditions. It complements previous studies by investigating a more comprehensive database and considering seasonal changes beside the annual time scale. Confirming previous studies, the agreement between the GCMs is generally high for temperature-related extremes, indicating increases of warm day occurrences and heatwave lengths, and decreases of cold extremes. However, we identify issues with the choice of indices used to quantify heatwave lengths, which do overall not affect the sign of the changes, but strongly impact the magnitude and patterns of projected changes in heatwave characteristics. Projected changes in precipitation and dryness extremes are more ambiguous than those in temperature extremes, despite some robust features, such as increasing dryness over the Mediterranean and increasing heavy precipitation over the Northern high latitudes. We also find that the assessment of projected changes in dryness depends on the index choice, and that models show less agreement regarding changes in soil moisture than in the commonly used ‘consecutive dry days’ index, which is based on precipitation data only. Finally an analysis of the scaling of changes of extreme temperature quantiles with global, regional and seasonal warming shows that much of the extreme quantile changes are due to a seasonal scaling of the regional annual-mean warming. This emphasizes the importance of the seasonal time scale also for extremes. Changes in extreme quantiles of temperature on land scale with changes in global annual mean temperature by a factor of more than 2 in some regions and seasons, implying large changes in extremes in several countries, even for the commonly discussed global 2°C-warming target.

Supplementary material

10584_2011_122_MOESM1_ESM.pdf (6.6 mb)
(PDF 6.59 MB)

References

  1. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109CrossRefGoogle Scholar
  2. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Hollt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  3. Boe J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35:L05702CrossRefGoogle Scholar
  4. Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9(2):292–299. doi:10.1175/2007JHM929.1 CrossRefGoogle Scholar
  5. Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne S (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13(9):1739–1747CrossRefGoogle Scholar
  6. Dai A (2010) Drought under global warming: a review. WIREs Clim Change. doi:10.1002/wcc.81 Google Scholar
  7. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi:10.1029/2007GL030000 CrossRefGoogle Scholar
  8. Easterling DR, Wallis TWR, Lawrimore JH, Heim J, Richard R (2007) Effects of temperature and precipitation trends on U.S. drought. Geophys Res Lett 34(20):L20709. doi:10.1029/2007GL031541 CrossRefGoogle Scholar
  9. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geosci 3(6):398–403. doi:10.1038/ngeo866 CrossRefGoogle Scholar
  10. Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  11. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104. doi:10.1016/j.gloplacha.2007.09.005, URL http://www.sciencedirect.com/science/article/B6VF0-4PTMXVP-3/2/16911ccab3b18a182d66f8266a15b6cc CrossRefGoogle Scholar
  12. Halsnaes K, Kühl J, Olesen JE (2007) Turning climate change information into economic and health impacts. Clim Change 81:145–162CrossRefGoogle Scholar
  13. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geosci 4(1):17–21. doi:10.1038/ngeo1032 CrossRefGoogle Scholar
  14. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller Jr, H, Chen Z (eds) Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  15. Jaeger E, Seneviratne S (2010) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn. doi:10.1007/s00382-010-0780-8 Google Scholar
  16. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444. doi:10.1175/JCLI4066.1 CrossRefGoogle Scholar
  17. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. doi:10.1175/2009JCLI3361.1 CrossRefGoogle Scholar
  18. Le Quere C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nature Geosci 2(12):831–836. doi:10.1038/ngeo689 CrossRefGoogle Scholar
  19. Lenton T, Held H, Kriegler E, Hall J, Lucht W, Rahmstorf S, Schellnhuber H (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793CrossRefGoogle Scholar
  20. Loarie S, Duffy P, Hamilton H, Asner G, Field C, Ackerly D (2009) The velocity of climate change. Nature 462(7276):1052–1055CrossRefGoogle Scholar
  21. Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37(9):L09703. doi:10.1029/2010GL042764 CrossRefGoogle Scholar
  22. Manning MR, Edmonds J, Emori S, Grubler A, Hibbard K, Joos F, Kainuma M, Keeling RF, Kram T, Manning AC, Meinshausen M, Moss R, Nakicenovic N, Riahi K, Rose SK, Smith S, Swart R, van Vuuren DP (2010) Misrepresentation of the IPCC CO2 emission scenarios. Nature Geosci 3(6):376–377. doi:10.1038/ngeo880 CrossRefGoogle Scholar
  23. Mastrandrea M, Field C, Stocker T, Edenhofer O, Ebi K, Frame D, Held H, Kriegler E, Mach K, Matschoss P et al (2010) Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC), URL https://www.ipcc-wg1.unibe.ch/guidancepaper/ar5_uncertainty-guidance-note.pdf
  24. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458(7242):1158–1162. doi:10.1038/nature08017 CrossRefGoogle Scholar
  25. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976CrossRefGoogle Scholar
  26. Mueller B, Seneviratne S, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher J, Guo Z et al (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38(6):L06402CrossRefGoogle Scholar
  27. Nakicenovic N, Swart R (2001) IPCC special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  28. Orlowsky B, Seneviratne SI (2010) Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J Clim 23(14):3918–3932CrossRefGoogle Scholar
  29. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317. doi:10.1038/nature04188 CrossRefGoogle Scholar
  30. Seneviratne SI, Luethi AD, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  31. Seneviratne SI, Corti T, Davin EL, Jaeger EB, Hirschi M, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161CrossRefGoogle Scholar
  32. Sheffield J, Wood E (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/s00382-007-0340-z CrossRefGoogle Scholar
  33. Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555. doi:10.1073/pnas.0913352107, URL http://www.pnas.org/content/107/21/9552.abstract, http://www.pnas.org/content/107/21/9552.full.pdf+html CrossRefGoogle Scholar
  34. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes—an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79(3):185–211CrossRefGoogle Scholar
  35. van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–5CrossRefGoogle Scholar
  36. Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi:10.1007/s00382-005-0057-9 CrossRefGoogle Scholar
  37. Zhang J, Wang WC, Wu L (2009) Land-atmosphere coupling and diurnal temperature range over the contiguous United States. Geophys Res Lett 36(6):L06706. doi:10.1029/2009GL037505 CrossRefGoogle Scholar
  38. Zhang X, Hegerl G, Zwiers F, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18(11):1641–1651CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland

Personalised recommendations