Advertisement

Climatic Change

, Volume 110, Issue 3–4, pp 597–618 | Cite as

Past and future plant diversity of a coastal wetland driven by soil subsidence and climate change

  • Han F. van DobbenEmail author
  • Pieter A. Slim
Open Access
Article

Abstract

On the island of Ameland (The Netherlands), natural gas has been extracted from a dune and salt marsh natural area since 1986. This has caused a soil subsidence of c. 1–25 cm, which can be used as a model to infer effects of future sea level rise. The aims of our study were (a) to relate the changes in the vegetation, and more specifically, in plant diversity, during the extraction period to soil subsidence and weather fluctuations, and (b) to use these relations to predict future changes due to the combination of ongoing soil subsidence and climate change. We characterised climate change as increases in mean sea level, storm frequency and net precipitation. Simultaneous observations were made of vegetation composition, elevation, soil chemistry, net precipitation, groundwater level, and flooding frequency over the period 1986–2001. By using multiple regression the changes in the vegetation could be decomposed into (1) an oscillatory component due to fluctuations in net precipitation, (2) an oscillatory component due to incidental flooding, (3) a monotonous component due to soil subsidence, and (4) a monotonous component not related to any measured variable but probably due to eutrophication. The changes were generally small during the observation period, but the regression model predicts large changes by the year 2100 that are almost exclusively due to sea level rise. However, although sea level rise is expected to cause a loss of species, this does not necessarily lead to a loss of conservancy value.

Keywords

Salt Marsh Detrended Correspondence Analysis Flooding Frequency Sample Score Storm Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2011_118_MOESM1_ESM.doc (292 kb)
(DOC 292 KB)
10584_2011_118_MOESM2_ESM.doc (36 kb)
(DOC 36 KB)
10584_2011_118_MOESM3_ESM.doc (122 kb)
(DOC 122 KB)
10584_2011_118_MOESM4_ESM.doc (38 kb)
(DOC 38 KB)
10584_2011_118_MOESM5_ESM.doc (44 kb)
(DOC 44 KB)
10584_2011_118_MOESM6_ESM.doc (56 kb)
(DOC 57 KB)

References

  1. Aptroot A, Van Dobben HF, Slim PA, Olff H (2007) The role of cattle in maintaining plant species diversity in wet dune valleys. Biodivers Conserv 16:1541–1550CrossRefGoogle Scholar
  2. Bijlsma RG (2004) Long-term population trends of rabbits (Oryctolagus cuniculus) on Pleistocene sands in the central and northern Netherlands. Lutra 47:3–20Google Scholar
  3. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, New York, pp 639–693Google Scholar
  4. Dijkema KS, Wolff WJ (1983) Flora and vegetation of the Wadden sea islands and coastal areas. Stichting Veth, LeidenGoogle Scholar
  5. Dijkema KS, Van Duin WE, Van Dobben HF (2005) Kweldervegetatie op Ameland: effecten van veranderingen in de maaiveldhoogte van Nieuwlandsrijd en De Hon. In: Begeleidingscommissie Monitoring Bodemdaling Ameland (ed) Monitoring effecten van bodemdaling op Ameland-Oost, pp 1–97Google Scholar
  6. Dijkema KS, Van Duin WE, Meesters HWG, Zuur AF, Ieno EN, Smith GM (2007) Sea level change and salt marshes in the Wadden Sea: a time series analysis. In: Zuur AF et al (eds) Analysing ecological data. Springer Science, New York, pp 601–614CrossRefGoogle Scholar
  7. During HJ (1980) Life forms and life strategies in Nanocyperion communities from the Netherlands Frisian islands. Acta Bot Neerl 29:483–496Google Scholar
  8. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Pauliszen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  9. Engel B (1990) The analysis of unbalanced linear models with variance components. Stat Neerl 44:195–219CrossRefGoogle Scholar
  10. Eysink WD, Dijkema KS, Van Dobben HF, Slim PA, Smit CJ, Sanders ME, Schouwenberg EPAG, Wiertz J, De Vlas J (2000) Monitoring effecten bodemdaling op Ameland-Oost: evaluatie na 13 jaar gaswinning: samenvatting. Report Alterra/WL∣Delft HydraulicsGoogle Scholar
  11. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  12. Hertog AJ, Rijken M (1996) Geautomatiseerde bepaling van natuurbehoudswaarde in vegetatie-opnamen. Report provincie GelderlandGoogle Scholar
  13. Hill MO (1979) TWINSPAN—a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, IthacaGoogle Scholar
  14. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University PressGoogle Scholar
  15. IUCN (2001) IUCN red list categories: version 3.1. Prepared by the IUCN Species Survival Commission. IUCN, GlandGoogle Scholar
  16. Jones MLM, Wallace HL, Norris D, Brittain SA, Haria S, Jones RE, Rhind PM, Reynolds BR, Emmett BA (2004) Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biol 6:598–605CrossRefGoogle Scholar
  17. Jones, MLM, Sowerby A, Williams DL, Jones RE (2008) Factors controlling soil development in sand dunes: evidence from a coastal dune soil chronosequence. Plant Soil 307:219–234CrossRefGoogle Scholar
  18. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Ketner-Oostra R, Sýkora KV (2000) Vegetation succession and lichen diversity on dry coastal calcium-poor dunes and the impact of management experiments. J Coast Conserv 6:191–206CrossRefGoogle Scholar
  20. Ketner-Oostra R, Sýkora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia 34:521–549CrossRefGoogle Scholar
  21. Kooijman AM, Dopheide JCR, Sevink J, Takken I, Verstraten JM (1998) Nutrient limitations and their implications on the effects of atmospheric deposition in coastal dunes; lime-poor and lime-rich sites in the Netherlands. J Ecol 86:511–526CrossRefGoogle Scholar
  22. Lowe JA, Gregory JM, Flather, RA (2001) Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Clim Dyn 18:179–188CrossRefGoogle Scholar
  23. Marquenie JM, Doornhof D (2005) Bodemdaling en gaswinning. In: Begeleidingscommissie Monitoring Bodemdaling Ameland (ed) Monitoring effecten van bodemdaling op Ameland-Oost, pp 1–9Google Scholar
  24. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877CrossRefGoogle Scholar
  25. Noest V (1991) Simulated impact of sea level rise on phreatic level and vegetation of dune slacks in the Voorne dune area (The Netherlands). Landscape Ecology 6:89–97CrossRefGoogle Scholar
  26. Oberdorfer E (1979) Pflanzensoziologische Exkursionsflora. Ulmer, StuttgartGoogle Scholar
  27. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Channing IC, Welham SJ, Gilmour AR, Thompson R, Webster R (2008) GenStat® release 11 reference manual. VSN International, Hemel HempsteadGoogle Scholar
  28. Provoost S, Ampe C, Bonte D, Cosyns E, Hoffmann M (2004) Ecology, management and monitoring of grey dunes in Flanders. J Coast Conserv 10:33–42CrossRefGoogle Scholar
  29. Robinson DL (1987) Estimation and use of variance components. Statistician 36:3–14CrossRefGoogle Scholar
  30. Sanders ME, Slim PA, Van Dobben HF, Wegman RMA, Schouwenberg EPAG (2004) Effecten van eilandvarianten in de Noordzee op de ecologie van strand en duin. Alterra Report 1092Google Scholar
  31. Senior CA, Jones RG, Lowe JA, Durman CF, Hudson D (2002) Predictions of extreme precipitation and sea-level rise under climate change. Phil Trans R Soc London A 360:1301–1311CrossRefGoogle Scholar
  32. Siebel HN (1993) Indicatiegetallen van blad- en levermossen. IBN Report 47Google Scholar
  33. Slim PA, Heuvelink GBM, Kuipers H, Dirkse GM, Van Dobben HF (2005) Vegetatiemonitoring en geostatistische vegetatiekartering duinvalleien Ameland-Oost. In: Begeleidingscommissie Monitoring Bodemdaling Ameland (ed): monitoring effecten van bodemdaling op Ameland-Oost, pp 1–74Google Scholar
  34. Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and Canodraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  35. Van der Meijden R, Weeda EJ, Holverda WJ, Hovenkamp PH (1990) Heukels’ Flora van Nederland. Wolters-Noordhoff, GroningenGoogle Scholar
  36. Van Dieren JW (1934) Organogene Dünenbildung, eine geomorphologische Analyse der westfrisischen Insel Terschelling mit pflanzensoziologischen Methoden. Nijhoff, Den HaagGoogle Scholar
  37. Van Dobben HF, Slim PA (2005) Evaluation of changes in permanent plots in the dunes and upper salt marsh at Ameland East: ecological effects of gas extraction. In: Begeleidingscommissie Monitoring Bodemdaling Ameland (ed) Monitoring effecten van bodemdaling op Ameland-Oost, pp 1–36Google Scholar
  38. Van Dobben HF, Ter Braak CJF (1998) Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmos Environ 32:551–557CrossRefGoogle Scholar
  39. Van Dobben H, Wamelink, W (2009) A Red-List-based biodiversity indicator and its application in model studies in the Netherlands. In: Hettelingh J-P et al (eds): Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe: CCE Status Report 2009. Coordination Centre for Effects, Bilthoven, pp 77–81Google Scholar
  40. Veer MAC (1997) Nitrogen availability in relation to vegetation changes resulting from grass-encroachment in Dutch dry dunes. J Coast Conserv 3:41–48CrossRefGoogle Scholar
  41. Vertegaal CTM (1999) Effecten van saltspray(reductie) op natuurwaarden in de duinen: literatuuroverzicht en analyse van leemten in kennis. Ministerie van Verkeer en Waterstaat,’s-GravenhageGoogle Scholar
  42. Vestergaard P (1997) Possible impact of sea-level rise on some habitat types at the Baltic coast of Denmark. Journal of Coastal Conservation 3:103–112CrossRefGoogle Scholar
  43. Wamelink GWW, Ter Braak CJF, Van Dobben HF (2003) Changes in large-scale patterns of plant biodiversity predicted from environmental economic scenarios. Landsc Ecol 18:513–527CrossRefGoogle Scholar
  44. Weeda EJ, Westra R, Westra C, Westra T (1985–1994) Nederlandse Oecologische Flora, vol 1–5. KNNV Uitgeverij, UtrechtGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Alterra, Wageningen URWageningenThe Netherlands

Personalised recommendations