Climatic Change

, Volume 110, Issue 3–4, pp 1005–1027 | Cite as

The Arctic’s rapidly shrinking sea ice cover: a research synthesis

  • Julienne C. StroeveEmail author
  • Mark C. Serreze
  • Marika M. Holland
  • Jennifer E. Kay
  • James Malanik
  • Andrew P. Barrett
Open Access


The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.


Arctic Ocean Pacific North American NCAR Community Climate System Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arctic Climate Impact Assessment (ACIA) (2004) Impacts of a warming arctic. Cambridge University Press, Cambridge, UK, p 139Google Scholar
  2. Belchansky GI, Douglas DC, Platonov NG (2004) Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001. J Clim 17, 67–80CrossRefGoogle Scholar
  3. Bitz CM (2008) Some aspects of uncertainty in predicting sea ice retreat, in Arctic Sea Ice Decline: observations, projections, mechanisms, and implications. In: deWeaver E, Bitz CM, Tremblay B (eds) AGU geophysical monograph series. American Geophysical Union, pp 63–76Google Scholar
  4. Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 1978–2007. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media (updated 2008)Google Scholar
  5. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610. doi: 10.2307/2289282 CrossRefGoogle Scholar
  6. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi: 10.1029/2007GL031972 CrossRefGoogle Scholar
  7. Dimitrenko IA, Polyakov IV, Krillov SA, Timokhov LA, Frolov IE, Sokolov VT, Simmons HL, Ivnov VV, Walsh D (2008) Toward a warmer Arctic Ocean: spreading the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins. J Geophys Res 113:C05023. doi: 10.1029/2007JC004158 CrossRefGoogle Scholar
  8. Drobot SD, Maslanik JA, Fowler C (2006) A long-range forecast of Arctic summer sea ice minimum extent. Geophys Res Lett 33. doi: 10.1029/2006GL026216 Google Scholar
  9. Drobot S, Stroeve J, Maslanik J, Emery W, Fowler C, Kay J (2008) Evolution of the 2007–2008 Arctic sea ice cover and prospects for a new record in 2008. Geophys Res Lett 35:L19501. doi: 10.1029/2008GL035316 CrossRefGoogle Scholar
  10. Fowler C, Emery WJ, Maslanik J (2004) Satellite-derived evolution of Arctic sea ice age: October 1978 to March 2003. IEEE Geosic Remote Sens Soc Lett 1(2):71–74CrossRefGoogle Scholar
  11. Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. Eos Trans AGU 87:509–511CrossRefGoogle Scholar
  12. Giles KA, Laxon SW, Ridout AL (2008) Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys Res Lett 35:L22502. doi: 10.1029/2008GL035710 CrossRefGoogle Scholar
  13. Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503. doi: 10.1029/2006GL028024 CrossRefGoogle Scholar
  14. Holland MM, Bitz CM, Tremblay B, Bailey DA (2008) The role of natural versus forced change in future rapid summer Arctic ice loss. In: DeWeaver ET, Bitz CM, Tremblay L-B (eds) Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophys Monogr Ser, 180. AGU, Washington, D.C., pp 133–150Google Scholar
  15. Jackson JM, Carmack EC, Mc Laughlin FA, Allen SE, Ingram RG (2010) Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J Geophys Res 115:C05021. doi: 10.1029/2009JC005265 CrossRefGoogle Scholar
  16. Kay JE, L’Ecuyer T, Gettelman A, Stephens G, O’Dell C (2008) The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys Res Lett 35:L08503. doi: 10.1029/2008GL033451 CrossRefGoogle Scholar
  17. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res Oceans 114(C07005). doi: 10.1029/2009JC005312 Google Scholar
  18. L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. doi: 10.1029/2008GL035205 CrossRefGoogle Scholar
  19. Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Climate 18:4879–4894CrossRefGoogle Scholar
  20. Lindsay RW, Zhang J, Schweiger AJ, Steele MA (2008) Seasonal predictions of ice extent in the Arctic Ocean. J Geophys Res 113:C02023. doi: 10.1029/2007JC004259 CrossRefGoogle Scholar
  21. Lindsay RW, Zhang J, Schweiger A, Steele M, Stern H (2009) Arctic sea ice retreat in 2007 follows thinning trend. J Climate. doi: 10.1175/2008JCLI2521.1 Google Scholar
  22. Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi: 10.1029/2009JC005436 CrossRefGoogle Scholar
  23. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally HJ, Yi D, Emery WJ (2007) A younger, thinner ice cover: increased potential for rapid, extensive ice loss. Geophys Res Lett 34:L24501. doi: 10.1029/2007GL032043 CrossRefGoogle Scholar
  24. Meier W, Fetterer F, Knowles K, Savoie M, Brodzik MJ (2006) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 2008. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media (updated 2008)Google Scholar
  25. Meier WN, Stroeve J, Fetterer F (2007) Whither Arctic sea ice?: a clear signal of decline regionally, seasonally, and extending beyond the satellite record. Ann Glaciol 46:428–434CrossRefGoogle Scholar
  26. Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Richter-Menge J, Weatherly JW, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett 24:L19504. doi: 10.1029/2007GL031128 CrossRefGoogle Scholar
  27. Ogi M, Wallace JM (2007) Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys Res Lett 34. doi: 10.1029/2007GL029897 Google Scholar
  28. Ogi M, Rigor IG, McPhee MG, Wallace JM (2008) Summer retreat of Arctic sea ice: role of summer winds. Geophys Res Lett 35:L24701. doi: 10.1029/2008GL035672 CrossRefGoogle Scholar
  29. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki S, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432CrossRefGoogle Scholar
  30. Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus 60A:589–597Google Scholar
  31. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas and trends, 1978–1996. J Geophys Res 104(C9):20,837–20,856CrossRefGoogle Scholar
  32. Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. doi: 10.1029/2007GL031480 CrossRefGoogle Scholar
  33. Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi: 10.1029/2008GL034007 CrossRefGoogle Scholar
  34. Polyakov IV, et al (2005) One more step toward a warmer Arctic. Geophys Res Lett 32:L17605. doi: 10.1029/2005GL023740 CrossRefGoogle Scholar
  35. Rigor IG, Wallace JM (2004) Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31:L09401. doi: 10.1029/2004GL019492 CrossRefGoogle Scholar
  36. Rigor IG, Wallace JM, Colony RL (2002) Response of sea-ice to the Arctic Oscillation. J Clim 15:2648–2663CrossRefGoogle Scholar
  37. Schauer U, Fahrbach E, Osterhus S, Rohardt G (2004) Arctic warming through the Fram Strait–Oceanic heat transport from three years of measurements. J Geophys Res 109:C06026. doi: 10.1029/203JC001823 CrossRefGoogle Scholar
  38. Schefer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461. doi: 10.1038/nature08227 Google Scholar
  39. Schweiger AJ, Zhang J, Lindsay RW, Steele M (2008) Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys Res Lett 35:L10503. doi: 10.1029/2008GL033463 CrossRefGoogle Scholar
  40. Serreze MC, Holland MM, Stroeve J (2007a) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  41. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464. doi: 10.1038/nature09051 CrossRefGoogle Scholar
  42. Serreze MC, Barrett AP, Slater AJ, Steele M, Zhang J, Trenberth KE (2007b) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi: 10.1029/2006JD008230 CrossRefGoogle Scholar
  43. Serreze MC, Barrett AP, Stroeve JC, Kindig DM, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19CrossRefGoogle Scholar
  44. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2:294-300. doi: 10.1038/NGE0473 CrossRefGoogle Scholar
  45. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmerman S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605. doi: 10.1029/2005GL025624 CrossRefGoogle Scholar
  46. Steffen K, Cavalieri DJ, Comiso JC, St. Germain K, Gloersen P, Key J, Rubinstein I (1992) The estimation of geophysical parameters using passive microwave algorithms. Chapt 10. In: Carsey F (ed) Microwave remote sensing of sea ice. Washington, D.C., American Geophysical Union, pp 243–259Google Scholar
  47. Stephens GL et al (2008) CloudSat mission: performance and early science after the first year of operation. J Geophys Res 113:D00A18. doi: 10.1029/2008JD009982 CrossRefGoogle Scholar
  48. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34. doi: 10.1029/2007GL029703 Google Scholar
  49. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. EOS Trans, AGU 89(2):13–14Google Scholar
  50. Stroeve JC, Maslanik J, Serreze MC, Rigor I, Meier W (2011) Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys Res Lett. doi: 10.1029/2010GL045662 Google Scholar
  51. Walsh JE, Chapman WL, Portis DH (2009) Arctic cloud fraction and radiative fluxes in atmospheric reanalysis. J Clim 22:2316–2334CrossRefGoogle Scholar
  52. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi: 10.1029/2009GL037820 CrossRefGoogle Scholar
  53. Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the dipole anomaly a major drier to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. doi: 10.1029/2008GL036706 CrossRefGoogle Scholar
  54. Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225CrossRefGoogle Scholar
  55. Yang X-Y, Fyfe JC, Flato GM (2010) The role of poleward energy transport in Arctic temperature evolution. Geophys Res Lett 37:L14803. doi: 10.1029/2010GL042487 CrossRefGoogle Scholar
  56. Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic Ocean: scenarios from the IPCC AR4 model simulations. J Clim 19:1730–1747CrossRefGoogle Scholar
  57. Zhang J, Steele M, Lindsay R, Schweiger A, Morison J (2008) Ensemble 1-Year predictions of Arctic sea ice for the spring and summer of 2008. Geophys Res Lett 35:L08502. doi: 10.1029/2008GL033244 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Julienne C. Stroeve
    • 1
    Email author
  • Mark C. Serreze
    • 1
  • Marika M. Holland
    • 2
  • Jennifer E. Kay
    • 2
    • 3
  • James Malanik
    • 4
  • Andrew P. Barrett
    • 1
  1. 1.National Snow and Ice Data Center, Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department Atmospheric SciencesColorado State UniversityFort CollinsUSA
  4. 4.Colorado Center for Astrodynamics ResearchUniversity of ColoradoBoulderUSA

Personalised recommendations