Climatic Change

, Volume 113, Issue 3–4, pp 1065–1079 | Cite as

Storm surge frequency reduction in Venice under climate change

  • Alberto TroccoliEmail author
  • Filippo Zambon
  • Kevin I. Hodges
  • Marco Marani


Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 re-analysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.


Storm Surge Extreme Storm Astronomical Tide False Alarm Ratio Storm Surge Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargagli A, Carillo A, Pisacane G, Ruti PM, Struglia MV, Tartaglione N (2002) An integrated forecast system over the mediterranean basin: extreme surge prediction in the Northern Adriatic Sea. Mon Weather Rev 130:1317–1332CrossRefGoogle Scholar
  2. Barriopedro D, Garcia-Herrera R, Lionello P, Pino C (2010) A discussion of the links between solar variability and high-storm-surge events in Venice. J Geophys Res Atmos 115:D13101. doi: 10.1029/2009JD013114 CrossRefGoogle Scholar
  3. Battistin D, Canestrelli P (2006) 1872–2004. La serie storica delle maree a Venezia. Istituzione Centro Previsione e Segnalazione Maree, VeneziaGoogle Scholar
  4. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  5. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301CrossRefGoogle Scholar
  6. Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31(6). doi: 10.1002/joc.2183
  7. Camuffo D (1993) Analysis of the sea surges at Venice from A.D. 782 to 1990. Theor Appl Climatol 47:1–14CrossRefGoogle Scholar
  8. Camuffo D, Secco C, Brimblecombe P, Martin Vide J (2000) Sea storms in the Adriatic Sea and the western Mediterranean during the last millennium. Clim Change 46:209–223. doi: 10.1023/A:1005607103766 CrossRefGoogle Scholar
  9. Canestrelli P, Pastore F (2000) Modelli stocastici per la previsione del livello di marea a Venezia, in La ricerca scientifica per Venezia - Il Progetto Sistema Lagunare Veneziano, Istituto Veneto di Scienze Lettere e Arti, Vol. II Tomo II, Venezia, pp 635–663Google Scholar
  10. Canestrelli P, Pastore F, Tomasin A (1986) Sviluppi di un modello operativo previsionale delle maree di Venezia e revisione di casi rilevanti, pubbl. interna, Comune di Venezia - Ass. ai Trasporti e SS.PPGoogle Scholar
  11. Canestrelli P, Mandich M, Pirazzoli PA, Tomasin A (2001) Wind, depression and seiches: tidal perturbations in Venice (1951–2000), Citta’ di Venezia, Centro Previsioni e Segnalazioni Maree, Comune di Venezia, p 105Google Scholar
  12. Carbognin L, Teatini P, Tomasin A, Tosi L (2009) Global change and relative sea level rise at Venice: what impact in term of flooding. Clim Dyn 35:1039–1047. doi: 10.1007/s00382-009-0617-5 CrossRefGoogle Scholar
  13. Catto JL, Shaffrey LC, Hodges KI (2010) Can Climate Models Capture the Structure of Extratropical Cyclones? J Clim 23:1621–1635CrossRefGoogle Scholar
  14. Catto JL, Shaffrey LC, Hodges KI (2011) Northern Hemisphere Extratropical Cyclones and Storm Tracks in a Warming Climate. J Clim. doi: 10.1175/2011JCLI4181.1 Google Scholar
  15. Fagherazzi S, Fosser G, D’Alpaos L, D’Odorico P (2005) Climatic oscillations influence the flooding of Venice. Geophys Res Lett 32(19):L19710. doi: 10.1029/2005GL023758 CrossRefGoogle Scholar
  16. Froude LSR (2010) TIGGE: comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Weather Forecast 25:819–836CrossRefGoogle Scholar
  17. Giorgi F, Lionello P (2007) Climate change projections for the Mediterranean Region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  18. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123(12):3458–3465CrossRefGoogle Scholar
  19. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373CrossRefGoogle Scholar
  20. Horvath K, Lin YL, Ivanican-Picek B (2008) Classification of cyclone tracks over the Apennines and the Adriatic Sea. Mon Weather Rev 136:2210–2227CrossRefGoogle Scholar
  21. Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061CrossRefGoogle Scholar
  22. Lionello P (2005) Extreme storm surges in the Gulf of Venice: present and future climate. In: Fletcher C, Spencer T (eds) Venice and its lagoon, state of knowledge. Cambridge University Press, CambridgeGoogle Scholar
  23. Lionello P, Nizzero A, Elvini E (2003) A procedure for estimating wind waves and storm-surge climate scenarios in a regional basin: the Adriatic Sea case. Clim Res 23:217–231CrossRefGoogle Scholar
  24. Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A (2007) Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402CrossRefGoogle Scholar
  25. Marcos M, Tsimplis MN (2008) Comaprison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113:C012028. doi: 10.1029/2008JC004820 CrossRefGoogle Scholar
  26. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  27. Mason SJ, Weigel AP (2009) A generic forecast verification framework for administrative purposes. Mon Weather Rev 137(1):331–349CrossRefGoogle Scholar
  28. Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  29. Pirazzoli PA, Tomasin A (2002) Recent evolution of surge-related events in the Northern Adriatic area. J Coast Res 18(3):537–554Google Scholar
  30. Ringer MA et al (2006) The physical properties of the atmosphere in the New Hadley centre global environmental model (HadGEM1). Part II: aspects of variability and regional climate. J Clim 19:1302–1326CrossRefGoogle Scholar
  31. Roeckner E et al (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. MPI Rep 349:127Google Scholar
  32. Shaffrey LC et al (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896CrossRefGoogle Scholar
  33. Stephenson DB, Casati B, Ferro CAT, Wilson CA (2008) The extreme dependency score: a non-vanishing measure for forecasts of rare events. Meteorol Appl 15:41–50CrossRefGoogle Scholar
  34. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen JC (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782CrossRefGoogle Scholar
  35. Suzuki T, Hasumi H, Sakamoto TT, Nishimura T, Abe-Ouchi A, Segawa T, Okada N, Oka A, Emori S (2005) Projection of future sea level and its variability in a high-resolution climate model: ocean processes and Greenland and Antarctic ice-melt contributions. Geophys Res Lett 32:L19706. doi: 10.1029/2005GL023677 CrossRefGoogle Scholar
  36. Tomasin A (2002) The frequency of Adriatic surges and solar activity. ISDGM Tech Rep 194:1–8Google Scholar
  37. Tomasin A (2005) Forecasting the water level in Venice: physical background and perspectives. In: Fletcher CA, Spencer T (eds) Flooding and environmental challenges for Venice and its lagoon: state of knowledge. Cambridge University Press, Cambridge, pp 71–78Google Scholar
  38. Trigo IF, Davies TD (2002) Meteorological conditions associated with sea surges in Venice: a 40 year climatology. Int J Climatol 22:787–803. doi: 10.1002/joc.719 CrossRefGoogle Scholar
  39. Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696CrossRefGoogle Scholar
  40. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  41. Zampato L, Umgiesser G, Zecchetto S (2007) Sea level forecasting in Venice through high resolution meteorological fields. Estuar Coast Shelf Sci 75:223–225CrossRefGoogle Scholar
  42. Zanchettin D, Rubino A, Traverso P, Tomasino M (2009) Teleconnections force interannual-to-decadal tidal variability in the lagoon of Venice (northern Adriatic). J Geophys Res 114:D07106. doi: 10.1029/2008JD011485 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alberto Troccoli
    • 1
    Email author
  • Filippo Zambon
    • 2
    • 3
  • Kevin I. Hodges
    • 2
  • Marco Marani
    • 3
  1. 1.Pye LaboratoryCommonwealth Scientific and Industrial Research Organisation (CSIRO)CanberraAustralia
  2. 2.Environmental Systems Science Centre (ESSC)University of ReadingReadingUK
  3. 3.Dept. IMAGE and International Center for HydrologyUniversity of PadovaPadovaItaly

Personalised recommendations