Climatic Change

, Volume 113, Issue 3–4, pp 1065–1079 | Cite as

Storm surge frequency reduction in Venice under climate change

  • Alberto Troccoli
  • Filippo Zambon
  • Kevin I. Hodges
  • Marco Marani


Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 re-analysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargagli A, Carillo A, Pisacane G, Ruti PM, Struglia MV, Tartaglione N (2002) An integrated forecast system over the mediterranean basin: extreme surge prediction in the Northern Adriatic Sea. Mon Weather Rev 130:1317–1332CrossRefGoogle Scholar
  2. Barriopedro D, Garcia-Herrera R, Lionello P, Pino C (2010) A discussion of the links between solar variability and high-storm-surge events in Venice. J Geophys Res Atmos 115:D13101. doi:10.1029/2009JD013114 CrossRefGoogle Scholar
  3. Battistin D, Canestrelli P (2006) 1872–2004. La serie storica delle maree a Venezia. Istituzione Centro Previsione e Segnalazione Maree, VeneziaGoogle Scholar
  4. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  5. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301CrossRefGoogle Scholar
  6. Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31(6). doi:10.1002/joc.2183
  7. Camuffo D (1993) Analysis of the sea surges at Venice from A.D. 782 to 1990. Theor Appl Climatol 47:1–14CrossRefGoogle Scholar
  8. Camuffo D, Secco C, Brimblecombe P, Martin Vide J (2000) Sea storms in the Adriatic Sea and the western Mediterranean during the last millennium. Clim Change 46:209–223. doi:10.1023/A:1005607103766 CrossRefGoogle Scholar
  9. Canestrelli P, Pastore F (2000) Modelli stocastici per la previsione del livello di marea a Venezia, in La ricerca scientifica per Venezia - Il Progetto Sistema Lagunare Veneziano, Istituto Veneto di Scienze Lettere e Arti, Vol. II Tomo II, Venezia, pp 635–663Google Scholar
  10. Canestrelli P, Pastore F, Tomasin A (1986) Sviluppi di un modello operativo previsionale delle maree di Venezia e revisione di casi rilevanti, pubbl. interna, Comune di Venezia - Ass. ai Trasporti e SS.PPGoogle Scholar
  11. Canestrelli P, Mandich M, Pirazzoli PA, Tomasin A (2001) Wind, depression and seiches: tidal perturbations in Venice (1951–2000), Citta’ di Venezia, Centro Previsioni e Segnalazioni Maree, Comune di Venezia, p 105Google Scholar
  12. Carbognin L, Teatini P, Tomasin A, Tosi L (2009) Global change and relative sea level rise at Venice: what impact in term of flooding. Clim Dyn 35:1039–1047. doi:10.1007/s00382-009-0617-5 CrossRefGoogle Scholar
  13. Catto JL, Shaffrey LC, Hodges KI (2010) Can Climate Models Capture the Structure of Extratropical Cyclones? J Clim 23:1621–1635CrossRefGoogle Scholar
  14. Catto JL, Shaffrey LC, Hodges KI (2011) Northern Hemisphere Extratropical Cyclones and Storm Tracks in a Warming Climate. J Clim. doi:10.1175/2011JCLI4181.1 Google Scholar
  15. Fagherazzi S, Fosser G, D’Alpaos L, D’Odorico P (2005) Climatic oscillations influence the flooding of Venice. Geophys Res Lett 32(19):L19710. doi:10.1029/2005GL023758 CrossRefGoogle Scholar
  16. Froude LSR (2010) TIGGE: comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Weather Forecast 25:819–836CrossRefGoogle Scholar
  17. Giorgi F, Lionello P (2007) Climate change projections for the Mediterranean Region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  18. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123(12):3458–3465CrossRefGoogle Scholar
  19. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373CrossRefGoogle Scholar
  20. Horvath K, Lin YL, Ivanican-Picek B (2008) Classification of cyclone tracks over the Apennines and the Adriatic Sea. Mon Weather Rev 136:2210–2227CrossRefGoogle Scholar
  21. Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061CrossRefGoogle Scholar
  22. Lionello P (2005) Extreme storm surges in the Gulf of Venice: present and future climate. In: Fletcher C, Spencer T (eds) Venice and its lagoon, state of knowledge. Cambridge University Press, CambridgeGoogle Scholar
  23. Lionello P, Nizzero A, Elvini E (2003) A procedure for estimating wind waves and storm-surge climate scenarios in a regional basin: the Adriatic Sea case. Clim Res 23:217–231CrossRefGoogle Scholar
  24. Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A (2007) Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402CrossRefGoogle Scholar
  25. Marcos M, Tsimplis MN (2008) Comaprison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113:C012028. doi:10.1029/2008JC004820 CrossRefGoogle Scholar
  26. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  27. Mason SJ, Weigel AP (2009) A generic forecast verification framework for administrative purposes. Mon Weather Rev 137(1):331–349CrossRefGoogle Scholar
  28. Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  29. Pirazzoli PA, Tomasin A (2002) Recent evolution of surge-related events in the Northern Adriatic area. J Coast Res 18(3):537–554Google Scholar
  30. Ringer MA et al (2006) The physical properties of the atmosphere in the New Hadley centre global environmental model (HadGEM1). Part II: aspects of variability and regional climate. J Clim 19:1302–1326CrossRefGoogle Scholar
  31. Roeckner E et al (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. MPI Rep 349:127Google Scholar
  32. Shaffrey LC et al (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896CrossRefGoogle Scholar
  33. Stephenson DB, Casati B, Ferro CAT, Wilson CA (2008) The extreme dependency score: a non-vanishing measure for forecasts of rare events. Meteorol Appl 15:41–50CrossRefGoogle Scholar
  34. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen JC (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782CrossRefGoogle Scholar
  35. Suzuki T, Hasumi H, Sakamoto TT, Nishimura T, Abe-Ouchi A, Segawa T, Okada N, Oka A, Emori S (2005) Projection of future sea level and its variability in a high-resolution climate model: ocean processes and Greenland and Antarctic ice-melt contributions. Geophys Res Lett 32:L19706. doi:10.1029/2005GL023677 CrossRefGoogle Scholar
  36. Tomasin A (2002) The frequency of Adriatic surges and solar activity. ISDGM Tech Rep 194:1–8Google Scholar
  37. Tomasin A (2005) Forecasting the water level in Venice: physical background and perspectives. In: Fletcher CA, Spencer T (eds) Flooding and environmental challenges for Venice and its lagoon: state of knowledge. Cambridge University Press, Cambridge, pp 71–78Google Scholar
  38. Trigo IF, Davies TD (2002) Meteorological conditions associated with sea surges in Venice: a 40 year climatology. Int J Climatol 22:787–803. doi:10.1002/joc.719 CrossRefGoogle Scholar
  39. Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696CrossRefGoogle Scholar
  40. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  41. Zampato L, Umgiesser G, Zecchetto S (2007) Sea level forecasting in Venice through high resolution meteorological fields. Estuar Coast Shelf Sci 75:223–225CrossRefGoogle Scholar
  42. Zanchettin D, Rubino A, Traverso P, Tomasino M (2009) Teleconnections force interannual-to-decadal tidal variability in the lagoon of Venice (northern Adriatic). J Geophys Res 114:D07106. doi:10.1029/2008JD011485 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alberto Troccoli
    • 1
  • Filippo Zambon
    • 2
    • 3
  • Kevin I. Hodges
    • 2
  • Marco Marani
    • 3
  1. 1.Pye LaboratoryCommonwealth Scientific and Industrial Research Organisation (CSIRO)CanberraAustralia
  2. 2.Environmental Systems Science Centre (ESSC)University of ReadingReadingUK
  3. 3.Dept. IMAGE and International Center for HydrologyUniversity of PadovaPadovaItaly

Personalised recommendations