Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain

Abstract

The highly visible coastal phenomenon of wetland loss in coastal Louisiana (LA) was examined through the prism of carbon accumulation and loss. Carbon storage or sequestration in rapidly subsiding LA coastal marsh soils was based on vertical marsh accretion and aerial change data. Marshes sequester significant amount of carbon through vertical accretion however, large amounts of carbon previously sequestration in the soil profile is lost through annual deterioration of these coastal marshes. Hurricanes, such as Katrina and Rita, have triggered instantaneous large carbon losses of sequestered soil carbon through the destruction of large areas of marsh. This analysis shows proposed coastal restoration efforts will not be sufficient to restore carbon losses by storms and marsh deterioration. Further, we have estimated the economic benefit of carbon sequestration for coastal wetland restoration efforts. Results show that LA coastal marshes may not serve as a net sink of carbon. These results may serve as a predictor of the impact of future predictions of increasing global sea level rise on carbon sequestration for other coastal regions.

References

  1. Amthor JS, Huston MA (1998) Terrestrial ecosystem response to global change: a research strategy. Oak Ridge National Laboratory, Oak Ridge, Report ORNL/TM-1998/27

  2. Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74:755–774

    Article  Google Scholar 

  3. Barras JA (2006) Land area change in coastal Louisiana after the 2005 hurricane. A series of three maps: USGS Open-File Report 06–1274

  4. Barras JA (2009) Land area change and overview of major hurricane impacts in coastal Louisiana, 2004–08: USGS Scientific Investigations Map 3080, scale 1:125,000, 6 p

  5. Barras JA, Bernier JC, Morton RA (2008) Land loss change in coastal Louisiana: a multidecadal perspective (from 1956 to 2006): USGS Survey Scientific Investigations Map 3019, scale 1:2,500,000. 14 p. pamphlet

  6. Barras J, Beville S, Britsch D, Hartley S, Hawes S, Johnston J et al (2003) Historical and projected coastal Louisiana land changes: 1978–2050. USGS Open File Report 03–334, pp 39

  7. Barras JA, Bourgeois PE, Handley LR (1994) Land loss in coastal Louisiana 1956–90. National Biological Survey, National Wetlands Research Center Open File Report 94–01.l

  8. Bianchi TS, Allison MA (2009) Large-river delta-front Estuaries as natural “recorders” of global environmental change. Proc Natl Acad Sci U S A 106:8085–8092

    Google Scholar 

  9. Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491

    Article  Google Scholar 

  10. Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC et al (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013. doi:10.1029/2007GB003052

    Article  Google Scholar 

  11. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  12. Cahoon D, Reed D (1995) Relationship among marsh surface topography, hydroperiod and soil accretion in deteriorating Louisiana salt marsh. J Coast Res 11:357–369

    Google Scholar 

  13. Cahoon DR, Lynch JC, Powell A (1996) Marsh vertical accretion in a southern California estuary, USA. Estuar Coast Shelf Sci 43:19–32

    Article  Google Scholar 

  14. Cahoon DR, Philippe H, John R, McKee KR, Profitt C, Perez BC (2003) Mass tree mortality leads to mangrove peat collapse at bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–1105

    Article  Google Scholar 

  15. Callaway JC, DeLaune RD, Patrick WH Jr (1996) Sediment accretion in coastal wetlands: a review and a stimulation of processes. Curr Top Wetl Biogeochem 3:2–23

    Google Scholar 

  16. Callaway JC, DeLaune RD, Patrick WH Jr (1997) Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. J Coast Res 13 181–191

    Google Scholar 

  17. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111. doi:10.1029/2002GB001917

    Article  Google Scholar 

  18. Choi Y, Wang Y (2004) Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Glob Biogeochem Cycles 18:4016. doi:10.1029/2004GB002261

    Article  Google Scholar 

  19. Coast 2050 Plan (1998) Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetland Conservation and Restoration Authority. Toward a Sustainable Coastal Louisiana. LA Dept of Natural Resources. Baton Rouge, pp 161

  20. Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S et al (2009) Forecasting the effects of accelerated sea level rise on tidal marsh ecosystems services. Front Ecol Environ 7:3–78

    Article  Google Scholar 

  21. Craft CB, Seneca ED, Broome SW (1993) Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes. Estuar Coast Shelf Sci 37:371–386

    Article  Google Scholar 

  22. Day JN, Christian RR, Boesch DM, Yanez-Arancibia A, Morris J, Twiley RR et al (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuar Coast 31:477–491

    Article  Google Scholar 

  23. Day J, Shaffer G, Britsch L, Reed D, Hawes S, Cahoon D (2000) Pattern and process of land loss in the Mississippi delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23:425–438

    Article  Google Scholar 

  24. DeLaune RD, Lindau CW (1987) δ 13C Signature of organic carbon in estuarine bottom sediment as an indicator of carbon export from adjacent marshes. Biogeochemistry 4:225–230

    Article  Google Scholar 

  25. DeLaune RD, Pezeshki SR (2003) The role of soil organic carbon in maintaining surface elevation in rapidly subsiding US Gulf of Mexico coastal marshes. Water Air Soil Pollut 3:167–179

    Google Scholar 

  26. DeLaune RD, Buresh RJ, Patrick WH Jr (1978) Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275:532–533

    Article  Google Scholar 

  27. DeLaune RD, Feijtel TC, Patrick WH Jr (1989) Nitrogen flows in Louisiana Gulf Coast salt marsh: Spatial Considerations. Biogeochemistry 8:25–37

    Article  Google Scholar 

  28. DeLaune RD, Nyman JA, Patrick WH Jr (1994) Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. J Coast Res 10:1021–1030

    Google Scholar 

  29. DeLaune RD, Pezeshki SR, Pardue JH, Whitcomb JH, Patrick WH Jr (1990) Some influences of sediment addition to deteriorating salt marsh in the Mississippi River deltaic plain: a pilot study. J Coast Res 6:181–188

    Google Scholar 

  30. Dunbar JB, Britsch L, Kemp E (1992) Land loss rates: Louisiana Coastal Plain. Technical Report GL-92–3, USACE Waterways Experiment Station, Vicksburg, MS

  31. Emanual K (2005) Increasing destruction of tropical cyclones over the last 30 years. Nature 436:686

    Article  Google Scholar 

  32. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manag 17:71–84

    Article  Google Scholar 

  33. Eswaran H, van der Berg E, Reich P, Kimble J (1995) Global soil carbon resources. In: Lal R, et al (eds) Soil and global change. CRC, Boca Raton

    Google Scholar 

  34. French JR, Spencer T (1993) Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Mar Geol 110:315–331

    Article  Google Scholar 

  35. Gardner LM, White JR (2010) Denitrification enzyme activity as a potential spatial indicator of nitrate loading in a Mississippi River diversion wetland. Soil Sci Soc Am J 74:1037–1047

    Article  Google Scholar 

  36. Gleason ML, Elmer DA, Pien NC, Fisher JS (1979) Effect of stem density upon sediment retention by salt marsh cord grass Spartina patens Loisel. Estuaries 2:271–273

    Article  Google Scholar 

  37. Hackney C, Yelverton G (1990) Effect of human activities and sea level rise on wetland ecosystems in the Cape Fear River Estuary, Northern Carolina, USA. Kluwer, Dordecht

    Google Scholar 

  38. Hatton RS, DeLaune RD, Patrick WH Jr (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin. Louisiana. Limnol Oceanogr 28:494–502

    Article  Google Scholar 

  39. Hatton RS, Patrick WH Jr, DeLaune RD (1982) Sedimentation, nutrient accumulation and early digenesis in Louisiana Barataria Basin coastal marshes. 6th Biennial Estuarine Res. Fed. Meet. Estuarine Comparison. Academic Research. pp 255–267

  40. Henman J, Poulter B (2008) Inundation of freshwater peatlands by sea level rise: uncertainty and potential carbon cycle feedbacks. J Geophys Res Biogeosci 13:G01011. doi:10.1029/2006JG000395

    Article  Google Scholar 

  41. Howes NC, FitzGerald DM, Hughes ZJ, Georgiou IY, Kulp MA, Miner MD, Smith JM, Barras JA (2010) Hurricane-induced failure of low salinity wetlands. Proc Natl Acad Sci 107:14014–14019

    Article  Google Scholar 

  42. Hoyos C, Agudelo P, Webster P, Curry J (2006) Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312:94–97

    Article  Google Scholar 

  43. IPCC (International Government Panel on Climate Change) (2007) Climate change (2007). The Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report. Cambridge University Press, Cambridge

  44. Kearney MS, Stevenson JC (1991) Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. J Coast Res 7:403–415

    Google Scholar 

  45. Keddy PA (2000) Wetland Ecology. Principle and conversation. Cambridge University Press, Cambridge

    Google Scholar 

  46. Lal R (2001) Soil carbon sequestration and greenhouse effect. Soil Science Society of America. Madison, Special Pub. No. 57

  47. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  Google Scholar 

  48. Li C, Swenson E, Weeks E, White JR (2009a) Asymmetric Tidal Straining across an Inlet: Lateral Inversion and Variability over a Tidal Cycle. Estuar Coast Shelf Sci 85:651–660

    Article  Google Scholar 

  49. Li C, Weeks E, Rego J (2009b) In Situ Measurements of Saltwater Flux through Tidal Passes of Lake Pontchartrain Estuary by Hurricanes Gustav and Ike in September 2008. Geophys Res Lett 36:L19609

    Article  Google Scholar 

  50. Li C, White JR, Chen C, Lin H, Weeks E, Galvan K et al (2011) Summertime tidal flushing of Barataria bay: transports of water and suspended sediments. J Geophys Res 116:C04009. doi:10.1029/2010JC006566

    Article  Google Scholar 

  51. McCaffrey RJ, Thomson J (1980) A record of the accumulation of sedimentation and trace metals in a Connecticut salt marsh. Adv Geophys 22:165–236

    Article  Google Scholar 

  52. McKee KL, Cherry JA (2009) Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River Delta. Wetlands 29:2–15

    Article  Google Scholar 

  53. Mendelssohn IA, Morris JT (2000) Eco-physiological control on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kuwer, Boston, pp 59–80

    Google Scholar 

  54. Morton RA, Bernier JC, Kelso KW, Barras JA (2010) Quantifying large-scale historical formation of accommodation in the Mississippi Delta. Earth Surf Processes Landf 35:1625–1641

    Article  Google Scholar 

  55. Neubauer SC (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuar Coast Shelf Sci 78:78–88

    Article  Google Scholar 

  56. Nyman JA, DeLaune RD (1999) Four potential impacts of global sea-level rise on coastal marsh stability. Curr Top Wetl Biogeochem 3:112–117

    Google Scholar 

  57. Nyman JA, DeLaune RD, Patrick WH Jr (1990) Wetland soil formation in the rapidly subsiding Mississippi River Deltaic Plain: mineral and organic matter relationships. Estuar Coast Shelf Sci 31:57–69

    Article  Google Scholar 

  58. Nyman SA, DeLaune RD, Pezeshki SR, Patrick WH Jr (1995) Organic matter fluxes and marsh stability in a rapidly subsiding estuarine marsh. Estuaries 113:207–218

    Article  Google Scholar 

  59. Nyman JA, Walters RJ, DeLaune RD, Patrick WH Jr (2006) Marsh vertical accretion via vegetative growth. Estuar Coast Shelf Sci 69:370–380

    Article  Google Scholar 

  60. Orson R, Panageotou W, Leatherman SP (1985) Response of tidal salt marshes of the U.S. Atlantic and Gulf Coasts to rising sea level. J Coast Res 1:29–37

    Google Scholar 

  61. Parkinson RW, White JR (1993) Late Holocene erosional shoreface retreat within a siliciclastic-to-carbonate transition zone, east central Florida, USA. J Sediment Res B64:408–415

    Google Scholar 

  62. Parkinson RW, DeLaune RD, White JR (1994) Holocene sea-level rise and the fate of mangrove forests within the Wider Caribbean Region. J Coast Res 10:1077–1086

    Google Scholar 

  63. Patrick WH Jr., DeLaune RD (1990) Subsidence, accretion and sea level rise in South San Francisco Bay marshes. Limnol Oceanogr 35:1389–1395

    Article  Google Scholar 

  64. Pearsall S, Poulter B (2005) Adapting lowlands to rising seas. In: Groom M, et al (eds) Principles of conservation biology. Sinauer, Sunderland

    Google Scholar 

  65. Rabenhorst MC (1995) Carbon storage in tidal marsh soils. In: Lal R, et al (eds) Soil and global change. CRC, Boca Raton

    Google Scholar 

  66. Rahmstorf S (2007) A semi-empirical approach to projecting sea level rise. Science 315:368–370

    Article  Google Scholar 

  67. Redfield AC (1972) Development of a New England salt marsh. Ecol Monogr 42:201–237

    Article  Google Scholar 

  68. Rejmanek M, Stumpf CE, Peterson G (1988) Hurricane induced sedimentation deposition in a Gulf coast marsh. Estuar Coast Shelf Sci 27:217–222

    Article  Google Scholar 

  69. Rybczyk J, Cahoon D (2002) Estimating the potential for submergence for two wetlands in the Mississippi River delta. Estuaries 25:985–989

    Article  Google Scholar 

  70. Salinas LM, DeLaune RD, Patrick WH Jr (1986) Changes occurring along a rapidly subsiding coastal area: Louisiana, USA. J Coast Res 2:269–284

    Google Scholar 

  71. Sampere TA, Bianchi TS, Wakeham SG, Allison MA (2008) Source of organic matter in surface sediment of the Louisiana continental margin: Effect of major depositional/transport pathways and Hurricane Ivan. Cont Shelf Res 28:247–248

    Article  Google Scholar 

  72. Sandor RL, Skees JR (1999) Creating a market for carbon emissions: opportunities for U.S. farmers. Choices: Mag Food, Farm, Resour Issues 14:13–17

    Google Scholar 

  73. Smith CJ, DeLaune RD, Patrick WH Jr (1983) Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuar Coast Shelf Sci 17:12–29

    Article  Google Scholar 

  74. Stevenson FJ, Cole MA (1999) Cycles of soil, 2nd edn. Wiley, New York

    Google Scholar 

  75. Stumpf RP (1983) The process of sedimentation on the surface of a salt marsh. Estuar Coast Shelf Sci 17:495–508

    Article  Google Scholar 

  76. Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    Article  Google Scholar 

  77. Visser JM, Kaiser C, Hossain I, Couvillion BR, Owens AB (2008) Forecasting 50-years of landscape change in Coastal Louisiana: no increased action & preliminary draft master plan, chapter 3. In: Twilley RR (ed) Coastal Louisiana ecosystem assessment & restoration (CLEAR) program: a tool to support coastal restoration, vol IV. Final Report to Department of Natural Resources, Coastal Restoration Division, Baton Rouge, LA. Contract No. 2512–06–02

  78. White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of Everglades soil. Soil Sci Soc Am J 64:1525–1534

    Article  Google Scholar 

  79. White JR, Reddy KR (2001) Effect of select inorganic electron acceptors on organic nitrogen mineralization in northern Everglades soils. Soil Sci Soc Am J 65:941–948

    Article  Google Scholar 

  80. White JR, DeLaune RD, Li CY, Bentley SJ (2009a) Sediment methyl and total mercury concentrations along the Georgia and Louisiana inner shelf, USA. Anal Lett 42:1219–1231

    Article  Google Scholar 

  81. White JR, Fulweiler RW, Li CY, Bargu S, Walker ND, Twilley RR et al (2009b) Mississippi River Flood of 2008: Observations of a large freshwater diversion on physical, chemical, and biological characteristics of a shallow, estuarine lake. Environ Sci Technol 43:5599–5604

    Article  Google Scholar 

  82. Wilson CA, Allison MA (2008) An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuar Coast Shelf Sci 80:483–494

    Article  Google Scholar 

  83. Young DR (1995) Coastal wetland dynamics in response to sea-level rise: transgression and erosion. Duke Univ, Durham

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. D. DeLaune.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

DeLaune, R.D., White, J.R. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change 110, 297–314 (2012). https://doi.org/10.1007/s10584-011-0089-6

Download citation

Keywords

  • Salt Marsh
  • Coastal Wetland
  • Wetland Loss
  • Marsh Soil
  • Land Loss