Climatic Change

, Volume 110, Issue 3–4, pp 801–821 | Cite as

Cereal harvest dates in the Czech Republic between 1501 and 2008 as a proxy for March–June temperature reconstruction

  • Martin Možný
  • Rudolf Brázdil
  • Petr Dobrovolný
  • Mirek Trnka
Article

Abstract

Cereal crop harvests reflect the weather patterns of the period immediately preceding them, and thus the dates at which they begin may be used as a source of proxy data on regional climate. Using systematic phenological observations in the Czech Lands (now known as the Czech Republic) after 1845, together with exploration of further surviving documentary evidence (chronicles, diaries, financial accounts etc.), it has proved possible to create series of winter wheat harvest dates for the period 1501–2008. Employing linear regression, the harvesting dates of the main cereal species (wheat, rye, barley, oats) were first converted to winter wheat harvest days and then normalised to the same altitude above sea level. The next step consisted of using series of winter wheat harvest dates to reconstruct mean March–June temperatures in the Czech Republic, applying standard palaeoclimatological methods. Series reconstructed by linear regression explain 70% of temperature variability. A profound cold period corresponding with late winter wheat harvests was noted between 1659 and 1705. In contrast, warm periods (i.e. early winter wheat harvests) were found for the periods of 1517–1542, 1788–1834 and 1946–2008. The period after 1951 is the warmest of all throughout the entire 1501–2008 period. Comparisons with other European temperature reconstructions derived from documentary sources (including grape harvest dates), tree-rings and instrumental data reveal generally close agreement, with significant correlations. Lower correlations around A.D. 1650 and 1750 may be partly related to deterioration of socio-economic conditions in the Czech Lands resulting from prolonged wars. The results obtained demonstrate that it is possible to use widely-available cereal harvest data for climate analysis and also that such data constitute an independent proxy data series for the region of Central Europe crucial to further studies of the potential impact of climatic variability and climate change on agriculture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aono Y, Omoto Y (1994) Estimation of temperature at Kyoto since the 11th century using flowering data of cherry trees in old documents. J Agric Meteorol 49:263–272CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  3. Balbín B (1986) Wonders and wealth of Bohemia. Panorama, Prague, p 351 (excerpt from Miscellanea historica regni Bohemiae by B. Balbín, 1679)Google Scholar
  4. Bauer Z, Trnka M, Bauerová J, Možný M, Štěpánek P, Bartošová L, Žalud Z (2010) Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystem in Central Europe. Int J Biometeorol 54:99–111CrossRefGoogle Scholar
  5. Bradley RS (1999) Paleoclimatology. Reconstructing climates of the quaternary. Academic, San Diego, p 610Google Scholar
  6. Braudel F (1981) The structures of everyday life. Civilization & capitalism, 15th–18th century. Harper & Row, New York, p 653Google Scholar
  7. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106CrossRefGoogle Scholar
  8. Brázdil R, Kotyza O (2000) History of weather and climate in the Czech Lands IV. Utilisation of economic sources for the study of climate fluctuation in the Louny region in the fifteenth–seventeenth centuries. Masaryk University, Brno, p 350Google Scholar
  9. Brázdil R, Valášek H, Luterbacher J, Macková J (2001) Die Hungerjahre 1770–1772 in den böhmischen Ländern. Verlauf, meteorologische Ursachen und Auswirkungen. Österr Z Geschwiss 12:44–78Google Scholar
  10. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  11. Brázdil R, Zahradníček P, Dobrovolný P, Kotyza O, Valášek H (2008) Historical and recent viticulture as a source of climatological knowledge in the Czech Republic. Geografie 113:351–371Google Scholar
  12. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Change 101:7–40CrossRefGoogle Scholar
  13. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Climate 19:5605–5623CrossRefGoogle Scholar
  14. Burkhardt T, Hense A (1985) On the reconstruction of temperature records from proxy data in Mid Europe. Arch Meteorol Geophys Bioclimatol B 35:341–359CrossRefGoogle Scholar
  15. Camuffo D, Jones P (eds) (2002) Improved understanding of past climate variability from early daily European instrumental sources. Kluwer, Dordrecht, p 392Google Scholar
  16. Chloupek O, Hrstková P, Schweigert P (2004) Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilization over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res 85:167–190CrossRefGoogle Scholar
  17. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  18. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Grape ripening as a past climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  19. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Changing plant phenology in response to climate change. TREE 22:357–365Google Scholar
  20. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  21. Demarée GR (2009) The phenological observations and networking of Adolphe Quetelet at the Royal observatory of Brussels. Italian J Agrometeorol 14:22–24Google Scholar
  22. Demarée GR, Rutishauer T (2009) Origins of the word “phenology”. Eos Trans AGU 90:291CrossRefGoogle Scholar
  23. Demek J, Havlíček M, Mackovčin P (2009) Landscape changes in the Dyjsko-svratecký úval Graben and Dolnomoravský úval Graben in the period 1764–2009. Acta Pruhon 91:23–30Google Scholar
  24. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, A.D. 1718–2007. Int J Climatol 29:1478–1492CrossRefGoogle Scholar
  25. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change 101:69–107CrossRefGoogle Scholar
  26. Easterling DR, Peterson TC (1995) A new method for detecting undocumented discontinuities in climatological time series. Int J Climatol 15:369–377CrossRefGoogle Scholar
  27. Eddy JA (1976) The Maunder minimum. Science 192:1189–1202CrossRefGoogle Scholar
  28. Fliri F (1991) Erfahrungen mit einer Tiroler Erntestatistik aus dem 18. Jahrhundert. Wetter Leben 43:17–23Google Scholar
  29. Frenzel B, Pfister C, Gläser B (eds) (1994) Climatic trends and anomalies in Europe 1675–1715. High resolution spatio-temporal reconstructions from direct meteorological observations and proxy data. Methods and results. Gustav Fischer, Stuttgart, p 480Google Scholar
  30. Glaser R (1991) Klimarekonstruktion für Mainfranken, Bauland und Odenwald anhand direkter und indirekter Witterungsdaten seit 1500. Gustav Fischer, Stuttgart, p 175Google Scholar
  31. Glaser R, Riemann D (2009) A thousand year record of climate variation for Central Europe at a monthly resolution. J Quat Sci 24:437–449CrossRefGoogle Scholar
  32. Glaser R, Brázdil R, Pfister C, Dobrovolný P, Barriendos Vallvé M, Bokwa A, Camuffo D, Kotyza O, Limanówka D, Rácz L, Rodrigo FS (1999) Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Clim Change 43:169–200CrossRefGoogle Scholar
  33. Grove JM (2004) Little Ice Age: ancient and modern. Routledge, London, p 718Google Scholar
  34. Guiot J, Nicault A, Rathegeber C, Edouard JL, Guibal F, Pichard G, Till C (2005) Last-millenium summer temperature variations in western Europe based on proxy data. Holocene 15:489–500CrossRefGoogle Scholar
  35. Hudson IL, Keatley MR (eds) (2010) Phenological research. Methods for environmental and climate change analysis. Springer, Dordrecht, p 522Google Scholar
  36. Jones G (2003) Winegrape phenology. In: Schwartz MD (ed) Phenology: an integrative environmental science—tasks for vegetation science, vol 39. Springer, New York, pp 523–539CrossRefGoogle Scholar
  37. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002CrossRefGoogle Scholar
  38. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  39. Juckes MN, Allen MR, Briffa KR, Esper J, Hegerl GC, Moberg A, Osborn TJ, Weber SL (2007) Millennial temperature reconstruction intercomparison and evaluation. Clim Past 3:591–609CrossRefGoogle Scholar
  40. Keenan DJ (2007) Grape harvest dates are poor indicators of summer warmth. Theor Appl Climatol 87:255–256CrossRefGoogle Scholar
  41. Kott I, Nekovář J, Helman K (2009) Two centuries of phenological observation in Middle Bohemia. Italian J Agrometeorol 14:29–32Google Scholar
  42. Lauer W, Frankenberg P (1986) Zur Rekonstruktion des Klimas im Bereich der Rheinpfalz seit Mitte des 16. Jahrhundert mit Hilfe von Zeitreihen der Weinquantität und Weinqualität. Gustav Fischer, Stuttgart, p 54Google Scholar
  43. Leijonhufvud L, Wilson R, Moberg A (2008) Documentary data as proxy variables for Stockholm late winter to early spring temperatures in the 18th and 19th centuries. Holocene 18:333–343CrossRefGoogle Scholar
  44. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2009) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141CrossRefGoogle Scholar
  45. Lekeš J, Čapek J, Halva E, Hýža V, Ulmann L, Váňová M (1990) Žito (Rye). Státní zemědělské nakladatelství, Prague, 248 ppGoogle Scholar
  46. Le Roy Ladurie E, Baulant M (1980) Grape harvests from the fifteenth through the nineteenth centuries. J Interdiscip Hist 10:839–849CrossRefGoogle Scholar
  47. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  48. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109CrossRefGoogle Scholar
  49. Mariani L, Parisi S, Failla O, Cola G, Zoia G, Bonardi L (2009) Tirano (1624–1930): a long time series of harvest dates for grapevine. Italian J Agrometeorol 14:7–16Google Scholar
  50. Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann 87A:17–36CrossRefGoogle Scholar
  51. Maurer C, Koch E, Hammerl C, Hammerl T, Pokorny E (2009) BACCHUS temperature reconstruction for the period 16th to 18th centuries from Viennese and Klosterneuburg grape harvest dates. J Geophys Res 114:D22106CrossRefGoogle Scholar
  52. Meier U (2001) Growth stages of mono- and dicotyledonous plants. German Federal Biological Research Centre for Agriculture and Forestry. http://www.bba.de/veroeff/bbch/bbcheng.pdf
  53. Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705CrossRefGoogle Scholar
  54. Menzel A (2005) A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol Z 14:75–77CrossRefGoogle Scholar
  55. Menzel A, Sparks TH, Estrella N, Roy DB (2006) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504Google Scholar
  56. Možný M, Nekovář J (2007) Dlouhodobé kolísání počátku vegetační sezony v Polabí v letech 1876–2005 (Long-term fluctuations of the growing season beginning in the Labe river region for the period 1876–2005). Meteorol Zpr 60:23–26Google Scholar
  57. Mozny M, Tolasz R, Nekovar J, Sparks T, Trnka M, Zalud Z (2009) The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric For Meteorol 149:913–919CrossRefGoogle Scholar
  58. Nejedlik P, Szalai S (2009) Phenological records in Carpathians in 19th century and their possible use. Italian J Agrometeorol 14:25–28Google Scholar
  59. Nekovář J, Bagar R, Kott I, Hájková L, Možný M, Bareš D, Hájek D (2007) Využití české fenologické databáze pro klimatologické aplikace (Use of the Czech phenology database for climatological applications). Český hydrometeorologický ústav, Prague, 126 ppGoogle Scholar
  60. Niedźwiedź T (2004) Rekonstrukcja warunków termicznych lata w Tatrach od 1550 roku (Reconstruction of summer temperature in the Tatra Mountains since 1550). Tatranske Prace Geogr 197:57–88Google Scholar
  61. Nordli PØ, Lie Ø, Nesje A, Dahl SO (2003) Spring-summer temperature reconstruction in western Norway 1734–2003: a data-synthesis approach. Int J Climatol 23:1821–1841CrossRefGoogle Scholar
  62. Okál M (1974) Martin Rakovský. Zobrané spisy. (Martin Rakovský. Collected manuscripts). Krásná literatúra, Bratislava, p 143Google Scholar
  63. Pejml K (1966) Příspěvek ke kolísání klimatu v severočeské vinařské a chmelařské oblasti od r. 1500–1900 (Contribution to climate fluctuations in the north Bohemian wine- and hop-growing region from 1500–1900). Český hydrometeorologický ústav, Prague, p 78Google Scholar
  64. Pejml K (1974) Příspěvek ke znalosti kolísání klimatu v Čechách v 16. až 18. stol. (Contribution to the knowledge of climate fluctuations in Bohemia from the 16th to 18th century). Meteorol Zpr 27:90–95Google Scholar
  65. Pfister C (1979) Getreide-Erntebeginn und Frühsommertemperaturen in schweizerischen Mittelland seit dem 17. Jahrhundert. Geogr Helv 34:23–35Google Scholar
  66. Pfister C (1988) Variations in the spring-summer climate of Central Europe from the High Middle Ages to 1850. In: Wanner H, Siegenthaler U (eds) Long and short term variability of climate. Springer, Berlin, pp 57–82CrossRefGoogle Scholar
  67. Pfister C (1999) Wetternachhersage: 500 Jahre Klimavariationen und Naturkatastrophen. Paul Haupt, Bern, pp 304Google Scholar
  68. Pfister C, Brázdil R (1999) Climatic variability in sixteenth-century Europe and its social dimension: a synthesis. Clim Change 43:5–53CrossRefGoogle Scholar
  69. Pfister C, Brázdil R (2006) Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s. Clim Past 2:115–129CrossRefGoogle Scholar
  70. Rutishauser T, Luterbacher J, Jeanneret F, Pfister C, Wanner H (2007) A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res 112:G04016CrossRefGoogle Scholar
  71. Rutishauer T, Schleip C, Sparks TH, Nordli Ø, Menzel A, Wanner H, Jeanneret F, Luterbacher J (2009) Temperature sensitivity of Swiss and British plant phenology from 1753 to 1958. Clim Res 39:179–190CrossRefGoogle Scholar
  72. Shabalova MV, van Engelen AFV (2003) Evaluation of a reconstruction of winter and summer temperatures in the Low Countries, AD 764–1998. Clim Change 58:219–242CrossRefGoogle Scholar
  73. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996Google Scholar
  74. Souriau A, Yiou P (2001) Grape harvest dates for checking NAO paleoreconstructions. Geophys Res Lett 28:3895–3898CrossRefGoogle Scholar
  75. Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. J Ecol 83:321–329CrossRefGoogle Scholar
  76. Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725CrossRefGoogle Scholar
  77. Stauffer B, Lüthi A (1975) Wirtschaftsgeschichtliche Quellen im Dienste der Klimaforschung. Geogr Helv 30:49–56Google Scholar
  78. Svitáková Z, Kott I, Nekovář J (2005) Fenologická data za posledních 150 let (Phenological data in recent 150 year period). In: Bioclimatology present and future. Křtiny, 12–14 September 2005. ISBN 80-86 690-31-08Google Scholar
  79. Štěpánek P (2004) Homogenizace teploty vzduchu na území České republiky v období přístrojových pozorování (Homogenisation of air temperature in the territory of the Czech Republic in the period of instrumental observations). Český hydrometeorologický ústav, Prague, p 56Google Scholar
  80. Štěpánek P (2007) AnClim software for homogenization and time series analysis. Institute of Geography, Faculty of Natural Sciences, Masaryk University, Brno. http://www.climahom.eu
  81. Terhivuo J, Kubin E, Karhu J (2009) Phenological observation since the days of Linné in Finland. Italian J Agrometeorol 14:45–49Google Scholar
  82. Tolasz R, Míková T, Valeriánová A, Voženílek V (eds) (2007) Climate Atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague, p 255Google Scholar
  83. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  84. Trnka M, Eitzinger J, Dubrovský M, Semerádová D, Štěpánek P, Hlavinka P, Balek J, Skalák P, Farda A, Formayer H, Žalud Z (2010) Is the rainfed crop production in Central Europe at risk? – Using a Regional Climate Model to produce high resolution agroclimatic information for decision makers. J Agric Sci 148:639–656CrossRefGoogle Scholar
  85. van Engelen AFV, Buisman J, IJnsen F (2001) A millennium of weather, winds and water in the Low Countries. In: Jones PD, Ogilvie AEJ, Davies TD, Briffa KR (eds) History and climate: memories of the future? Kluwer, New York, pp 101–124Google Scholar
  86. Vincent LA (1998) A technique for the identification of inhomogeneities in Canadian temperature series. J Climate 11:1094–1104CrossRefGoogle Scholar
  87. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484Google Scholar
  88. Wielgolaski FE (2009) Old Norwegian phenodata series in relation to recent ones. Italian J Agrometeorol 14:33–38Google Scholar
  89. Wilson PH (2009) The thirty years war: Europe’s tragedy. Harvard University Press, Harvard, p 1040Google Scholar
  90. Wilson R, Topham J (2004) Violins and climate. Theor Appl Climatol 77:9–24CrossRefGoogle Scholar
  91. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Martin Možný
    • 1
  • Rudolf Brázdil
    • 2
  • Petr Dobrovolný
    • 2
  • Mirek Trnka
    • 3
  1. 1.Doksany Observatory, Climatology SectionCzech Hydrometeorological InstituteDoksanyCzech Republic
  2. 2.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of Agrosystems and BioclimatologyMendel University of Agriculture and Forestry BrnoBrnoCzech Republic

Personalised recommendations