Climatic Change

, Volume 110, Issue 1–2, pp 215–226 | Cite as

Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime

Article

Abstract

Wildfires are an integral part of Mediterranean ecosystems; humans impact on landscapes imply changes in fuel amount and continuity, and thus in fire regime. We tested the hypothesis that fire regime changed in western Mediterranean Basin during the last century using time series techniques. We first compiled a 130-year fire history for the Valencia province (Spain, Eastern Iberian Peninsula, Western Mediterranean Basin) from contemporary statistics plus old forest administration dossiers and newspapers. We also compiled census on rural population and climatic data for the same period in order to evaluate the role of climate and human-driven fuel changes on the fire regime change. The result suggested that there was a major fire regime shift around the early 1970s in such a way that fires increased in annual frequency (doubled) and area burned (by about an order of magnitude). The main driver of this shift was the increase in fuel amount and continuity due to rural depopulation (vegetation and fuel build-up after farm abandonment) suggesting that fires were fuel-limited during the pre-1970s period. Climatic conditions were poorly related to pre-1970s fires and strongly related to post-1970s fires, suggesting that fire are currently less fuel limited and more drought-driven than before the 1970s. Thus, the fire regime shift implies also a shift in the main driver for fire activity, and this has consequences in the global change agenda.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen T, Carstensen J, Hernández-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24(1):49–57CrossRefGoogle Scholar
  2. Baeza J, Santana VM, Pausas JG, Vallejo R (2011) Successional trends in standing dead biomass in Mediterranean Basin species Sci. J Veg Sci. doi:10.1111/j.1654-1103.2011.01262.x
  3. Bonet A, Pausas JG (2007) Old field dynamics on the dry side of the Mediterranean Basin: patterns and processes in semiarid SE Spain. In: Cramer VA, Hobbs RJ (eds) Old fields: dynamics and restoration of abandoned farmland. Island, Washington, DC, pp 247–264Google Scholar
  4. Brock W, Carpenter S (2010) Interacting regime shifts in ecosystems: implication for early warnings. Ecol Monogr 80:353–367. doi:10.1890/09-1824 CrossRefGoogle Scholar
  5. Brown RL, Durbin J, Evans JM (1975) Techniques for testing the constancy of regression relationships over time (with discussion). J R Stat Soc 37:149–192Google Scholar
  6. Brown TJ, Hall BL, Westerling AL (2004) The impact of twenty-first century climate change on wildland fire danger in the Western United States: an applications perspective. Clim Change 62(1):365–388CrossRefGoogle Scholar
  7. Covington WW, Moore MM (1994) Southwestern ponderosa forest structure: changes since Euro-American settlement. J For 92(1):39–47Google Scholar
  8. Delcourt HR, Delcourt PA (1997) Pre-Columbian Native American use of fire on southern Appalachian landscapes. Conserv Biol 11(4):1010–1014CrossRefGoogle Scholar
  9. Esteban-Parra MJ, Pozo-Vázquez D, Rodrigo FS, Castro-Díez Y (2003) Temperature and precipitation variability and trends in northern Spain in the context of the Iberian peninsula climate. In: Bolle HJ (ed) Mediterranean climate: variability and trends. Springer, Berlin, pp 259–276Google Scholar
  10. Fernández-Muñoz S (1999) Cambio y continuidad en los incendios forestales: estudio de casos en las provincias de Soria y Valencia. In: Aranque E (ed) Incendios históricos. Una aproximación multidisciplinar. Universidad Internacional de Andalucía, pp 111–148Google Scholar
  11. Fulé PZ, Ribas M, Gutiérrez E, Vallejo R, Kaye MW (2008) Forest structure and fire history in an old Pinus nigra forest, eastern spain. For Ecol Manag 255(3–4):1234–1242CrossRefGoogle Scholar
  12. Guyette RP, Muzika RM, Dey DC (2002) Dynamics of an anthropogenic fire regime. Ecosystems 5(5):472–486Google Scholar
  13. Keeley JE (2002) Native American impacts on fire regimes of the California coastal ranges. J Biogeogr 29:303–320CrossRefGoogle Scholar
  14. Keeley JE, Fotheringham CJ (2001) Historic fire regime in southern California shrublands. Conserv Biol 15(6):1536–1548CrossRefGoogle Scholar
  15. Keeley JE, Zedler PH (2009) Large, high intensity fire events in southern California shrublands: debunking the fine-grained age-patch model. Ecol Appl 19:69–94CrossRefGoogle Scholar
  16. Keeley JE, Fotheringham CJ, Morais M (1999) Reexamining fire suppression impacts on brushland fire regimes. Science 284(5421):1829–1832CrossRefGoogle Scholar
  17. Lebourgeois F, Granier A, Breda N (2001) Une analyse des changements climatiques régionaux en france entre 1956 et 1997. Réflexions en terme de conséquences pour les écosystems forestiers. Ann For Sci 58(7):733–754CrossRefGoogle Scholar
  18. MacNeill IB (1974) Tests for change of parameter at unknown times and distributions of some related functionals on Brownian motion. Ann Stat 2(5):950–962CrossRefGoogle Scholar
  19. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience 1(10):697–702CrossRefGoogle Scholar
  20. Millán MM, Estrela MJ, Sanz MJ, Mantilla E, Martín M, Pastor F, Salvador R, Vallejo R, Alonso L, Gangoiti G (2005) Climatic feedbacks and desertification: the Mediterranean model. J Clim 18(5):684–701CrossRefGoogle Scholar
  21. Moritz MA (2003) Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology 84(2):351–361CrossRefGoogle Scholar
  22. Ovaskainen O, Hanski I (2001) Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theor Popul Biol 60:281–302CrossRefGoogle Scholar
  23. Pausas JG (2004) Changes in fire and climate in the eastern Iberian peninsula (Mediterranean Basin). Clim Change 63(3):337–350CrossRefGoogle Scholar
  24. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59(7):593–601. doi:10.1525/bio.2009.59.7.10 CrossRefGoogle Scholar
  25. Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean Basin?—a review. Int J Wildland Fire 17(6):713–723CrossRefGoogle Scholar
  26. Pérez Cueva AJ (1994) Atlas climàtic de la Comunitat Valenciana (1961–1990). Generalitat Valenciana, ValenciaGoogle Scholar
  27. Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc Natl Acad Sci USA 101(42):15130–15135CrossRefGoogle Scholar
  28. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  29. Ploberger W, Kramer W (1992) The CUSUM test with OLS residuals. Econometrica 60(2):271–285CrossRefGoogle Scholar
  30. Seijo F (2009) Who framed the forest fire? State framing and peasant counter-framing of anthropogenic forest fires in Spain since 1940. J Environ Policy Plan 11:103–128CrossRefGoogle Scholar
  31. Turner MG, Gardner RH (1991) Quantitative methods in landscape ecology. Ecological studies. SpringerGoogle Scholar
  32. With KA, Crist TO (1995) Critical thresholds in species’ responses to landscape structure. Ecology 76(8):2446–2459CrossRefGoogle Scholar
  33. Zeileis A, Leisch F, Hornik K, Kleiber C (2002) Strucchange: an R package for testing for structural change in linear regression models. J Stat Soft 7(2):1–38Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.CIDE, CSIC, Apartado OficialAlbalSpain
  2. 2.Departamento de Humanidades Historia, Geografía y ArteUniversidad Carlos IIIColmenarejoSpain

Personalised recommendations