Advertisement

Climatic Change

, Volume 109, Issue 3–4, pp 695–718 | Cite as

Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause

  • Anna Maria Jönsson
  • Susanne Harding
  • Paal Krokene
  • Holger Lange
  • Åke Lindelöw
  • Bjørn Økland
  • Hans Peter Ravn
  • Leif Martin Schroeder
Article

Abstract

The Eurasian spruce bark beetle, Ips typographus, is one of the major forest insect pests in Europe, capable of mass-attacking and killing mature Norway spruce trees. The initiation and development of a new generation are strongly controlled by temperature and a warmer climate may affect the number of generations that is produced per year and hence the outbreak dynamics. Experimental knowledge regarding reproductive diapause adaptations is, however, too sparse for large-scale assessments of future trends. We developed a model description of diapause induction, and used gridded observational temperature data to evaluate multiple combinations of day length and temperature thresholds to find the model parameterisation most coherent with I. typographus monitoring data from Scandinavia. The selected model parameterisation is supported by European literature data, though further experimental studies are required to analyse population specific adaptations and capacity for adjustments to changing climate conditions. Implementing the model description of reproductive diapause in a temperature driven model of bark beetle phenology (swarming activity and development from egg to mature bark beetle), enabled us to assess the length of the late summer swarming period that is a critical determinant of the risk of forest damage. By using regional climate model data we show that higher temperatures can result in increased frequency and length of late summer swarming events, producing a second generation in southern Scandinavia and a third generation in lowland parts of central Europe. Reproductive diapause will not prevent the occurrence of an additional generation per year, but the day length cues may restrict the length of the late summer swarming period.

Keywords

Regional Climate Model Temperature Threshold Bark Beetle Pheromone Trap Glob Chang Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderbrant O (1990) Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecol Entomol 15:1–8CrossRefGoogle Scholar
  2. Annila E (1969) Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytiade). Ann Zool Fenn 6:161–208Google Scholar
  3. Austarå Ø, Pettersen H, Bakke A (1977) Bivoltinism in Ips typographus in Norway, and winter mortality in second generation. Medd Nor Inst Skogforsk 33:272–280Google Scholar
  4. Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286CrossRefGoogle Scholar
  5. Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manag 249:171–186CrossRefGoogle Scholar
  6. Bakke A (1983) Host tree and bark beetle interaction during a mass outbreak of Ips typographus in Norway. Z Angew Entomol 96:118–125CrossRefGoogle Scholar
  7. Bakke A (1992) Monitoring bark beetle populations: effects of temperature. J Appl Entomol 114:208–211CrossRefGoogle Scholar
  8. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Chang Biol 13:1368–1385CrossRefGoogle Scholar
  9. Bender K (1948) Studien über die Massenvermehrung des grossen Fichtenborkenkäfers (Ips typographus L.) aus dem raum Messkirch (Südbaden) während der Jahre 1946 und 1947. Martin Kögel, Freiburg, p 79Google Scholar
  10. Carroll A, Taylor SW, Régnière J, Safranyik L (2003) Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In: Shore TL, Brooks JE, Stone JE (eds) Mountain pine beetle symposium: challenges and solutions. October 30–31, 2003, Kelowna, British Columbia., Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, p 298Google Scholar
  11. Christiansen E, Bakke A (1988) The spruce bark beetle of Eurasia. In: Berryman AA (ed) Dynamics of forest insect populations. Plenum Publishing Corporation, pp 479–503Google Scholar
  12. Denlinger DL (2002) Regulation of diapause. Ann Rev Entomol 47:93–122CrossRefGoogle Scholar
  13. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van der Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projection. Clim Change 81:53–70CrossRefGoogle Scholar
  14. Dolezal P, Sehnal F (2007) Effects of photoperiod and temperature on the development and diapause of the bark beetle Ips typographus. J Appl Entomol 131:165–173CrossRefGoogle Scholar
  15. Eidmann HH (1965) Untersuchungen über die Verteilung und den Verlauf von Insektenbefall an berindetem Kiefern- und Fichtenholz: ein Beitrag zur Ökologie und Entwicklung von Rindenbrütern in Schweden. Rapporter och uppsatser/Institutionen för skogsentomologi, Skogshögskolan, Stockholm, no. 0585-3273, 3, p 59Google Scholar
  16. Faccoli M (2002) Winter mortality in sub-corticolous populations of Ips typographus (Coleoptera, Scolytidae) and its parasitoids in the south-eastern Alps. Anz Schäldlingskd 75:62–68CrossRefGoogle Scholar
  17. Faccoli M (2009) Effect of Weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the Southeastern Alps. Environ Entomol 38(2):307–316CrossRefGoogle Scholar
  18. Forsse E (1991) Flight propensity and diapause incidence in five populations of the bark beetle Ips typographus in Scandinavia. Entomol Exp Appl 61:53–57CrossRefGoogle Scholar
  19. Hagen SB, Jepsen JU, Ims RA, Yoccoz NG (2007) Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? Ecography 30:299–307Google Scholar
  20. Harding S, Ravn HP (1985) Seasonal activity of Ips typographus L. (Col., Scolytiade) in Denmark. Z Angew Entomol 99:123–131CrossRefGoogle Scholar
  21. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119CrossRefGoogle Scholar
  22. Hlásny T, Turc̀áni M (2009) Insect pests as climate change driven disturbances in forest ecosystems. In: Strelcová K, Matyas C, Kleidon A, Lapin M, Matejka F, Blazenec M, Škvarenina J, Holecy J (eds) Bioclimatology and Natural Hazards. Springer, p 298, 165–170Google Scholar
  23. Gomez-Zurita J, Galian J (2005) Current knowledge on genes and genomes of phytophagous beetles (Coleoptera: Chrysomeloidea, Curculionoidea): a review. Eur J Entomol 102:577–597Google Scholar
  24. Good P, Bärring L, Giannakopoulos C, Holt T, Palutikof JP (2006) Non-linear regional relationships between climate extremes and annual mean temperatures in model projections for 1961–2099 over Europe. Clim Res 31:19–34CrossRefGoogle Scholar
  25. Gray DR, Ravlin FW, Braine JA (2001) Diapause in the gypsy moth: a model of inhibition and development. J Insect Physiol 47:173–184CrossRefGoogle Scholar
  26. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, p 996Google Scholar
  27. Jansson PE, Claréus J (1996) Pgraph v1.3 user’s manual. Inst för Markvetenskap, SLU, Uppsala, Sweden, p 66Google Scholar
  28. Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of the climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol 146:70–81CrossRefGoogle Scholar
  29. Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol 15:486–499CrossRefGoogle Scholar
  30. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  31. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology, no 108, Dec 2005. Swedish Meteorological and Hydrological Institute, SE-60176 Norrköping, Sweden, p 54Google Scholar
  32. Kuhn W (1949) Das Massenauftreten des achtzähnigen Fichtenborkenkäfers Ips typographus L. nach Untersuchungen in schweizerischen Waldungen 1946–49. Mitt Schweiz Anst Forstl Verswes 26:245–330Google Scholar
  33. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990CrossRefGoogle Scholar
  34. Lange H, Okland B, Krokene P (2006) Thresholds in the life cycle of the spruce bark beetle under climate change. Interjournal for Complex Systems 1648:1–10Google Scholar
  35. Lange H, Økland B, Krokene P (2009) To be or twice to be? The life cycle development of the spruce bark beetle under climate change. In: Minai Ali A, Braha D, Bar-Yam Y (eds) Unifying themes in complex systems. Proceedings of the 6th international conference on complex systems. Springer, pp 251–258Google Scholar
  36. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  37. Merker E (1952) Das Wetter der Jahre 1939 bis 1950 und sein Einfluss auf die Massenvermehrung des grossen Fichtenborkenkäfers in Südbaden. Allg Forst- Jagdztg 123:213–233Google Scholar
  38. Nakićenović N, Swart R (eds) (2000) Emission scenarios, a special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 612Google Scholar
  39. Netherer S (2003) Modelling of bark beetle development and of site- and stand-related predisposition to Ips typographus (L.) (Coleoptera; Scolytidae). A contribution to risk assessment. Ph.D. thesis, BOKU—University of Natural Resources and Applied Life Sciences, ViennaGoogle Scholar
  40. Netherer S, Nopp-Mayr U (2005) Predisposition assessment systems (PAS) as supportive tools in forest management—rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For Ecol Manag 207:99–107CrossRefGoogle Scholar
  41. Netherer S, Pennerstorfer J (2003) Parameters relevant for modeling the potential development of Ips typographus (Coleoptera: Scolytidae). Integr Pest Manag Rev 6:177–184CrossRefGoogle Scholar
  42. Nihlgård B (1997) Forest decline and environmental stress. In: Brune D, Chapman DV, Gwynne MD, Pacyna JM (eds) The global environment; science, technology and management. Scandinavia Science, Oslo, pp 422–440Google Scholar
  43. Økland B, Bjørnstad ON (2006) A resource depletion model of forest insect outbreaks. Ecology 87:283–290CrossRefGoogle Scholar
  44. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1000Google Scholar
  45. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  46. Persson G, Bärring L, Kjellström E, Strandberg G, Rummukainen M (2007) Climate indices for vulnerability assessments. SMHI Reports Meteorology Climatology No. 111, Norrköping, Sweden, p 64Google Scholar
  47. Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzee N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624CrossRefGoogle Scholar
  48. Sallé A, Arthofer W, Lieutier F, Stauffer C, Kerdelhué C (2007) Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biol J Linn Soc 90:239–246CrossRefGoogle Scholar
  49. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  50. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633CrossRefGoogle Scholar
  51. Schimitschek E (1931) Forstentomologische Untersduchungen aus dem Gebiete von Lunz. I. Standortsklima in ihren Beziehungen zum Entwicklungsablauf und zur Mortalität von insekten. Z Angew Entomol 18:460–491CrossRefGoogle Scholar
  52. Seitner M (1923–24) Beobachtungen und Erfahrungen aus dem Auftreten des achtzähnigen Fichtenborkenkäfers Ips typographus L. In: Oberösterreich und Steiermark in den Jahren 1921 und 1922. Centralbl. f.d.ges. Forstwesen 49(1/3):1–11 (part 1), (4/6):149–162 (part 2 + 3), (10/12):270–277 (part 4); 1924, 50(1/3):2–23 (end)Google Scholar
  53. Stauffer C, Lakatos F, Hewitt GM (1999) Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae). Mol Ecol 8:763–773CrossRefGoogle Scholar
  54. Steinbauer MJ, Kriticos DJ, Lukacs Z, Clarke AR (2004) Modelling a forest lepidopteran: phenological plasticity determines voltinism which influences population dynamics. For Ecol Manag 198:117–131CrossRefGoogle Scholar
  55. Tauber MJ, Tauber CA (1976) Insect seasonality: diapause maintenance, termination, and postdiapause development. Ann Rev Entomol 21:81–107CrossRefGoogle Scholar
  56. Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Chang Biol 14:951–957CrossRefGoogle Scholar
  57. van Asch M, Tienderen PH, Holleman LJM, Visser ME (2007) Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob Chang Biol 13:1596–1604CrossRefGoogle Scholar
  58. Vanhanen H, Veleli TO, Paivinen S, Kellomaki S, Niemela P (2007) Climate change and range shifts in two insect defoliators: gypsy moth and nun moth—a model study. Silva Fenn 41:621–638Google Scholar
  59. Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294CrossRefGoogle Scholar
  60. Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manag 202:67–82CrossRefGoogle Scholar
  61. Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). J Appl Entomol 122:185–191CrossRefGoogle Scholar
  62. Wermelinger B, Seifert M (1999) Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol Entomol 24:103–110CrossRefGoogle Scholar
  63. Wild M (1953) Die Entwicklung des grossen Fichtenborkenkäfers Ips typographus L. im Hochschwarzwald (1000–1200 m.ü.M.) und ihre Abhängigkeit vom Klima 1947–1950. Berichte des Naturforschenden Gesellschaft zu Freiburg i.Br., pp 121–176Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anna Maria Jönsson
    • 1
  • Susanne Harding
    • 2
  • Paal Krokene
    • 3
  • Holger Lange
    • 3
  • Åke Lindelöw
    • 4
  • Bjørn Økland
    • 3
  • Hans Peter Ravn
    • 5
  • Leif Martin Schroeder
    • 4
  1. 1.Department of Earth and Ecosystem Sciences, Division of Physical Geography and Ecosystem AnalysisLund UniversityLundSweden
  2. 2.Department of Agriculture and Ecology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg C.Denmark
  3. 3.Norwegian Forest and Landscape InstituteÅsNorway
  4. 4.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  5. 5.Forest & Landscape, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg C.Denmark

Personalised recommendations