Climatic Change

, Volume 109, Issue 3–4, pp 617–645 | Cite as

Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example

  • Caroline A. KatsmanEmail author
  • A. Sterl
  • J. J. Beersma
  • H. W. van den Brink
  • J. A. Church
  • W. Hazeleger
  • R. E. Kopp
  • D. Kroon
  • J. Kwadijk
  • R. Lammersen
  • J. Lowe
  • M. Oppenheimer
  • H. -P. Plag
  • J. Ridley
  • H. von Storch
  • D. G. Vaughan
  • P. Vellinga
  • L. L. A. Vermeersen
  • R. S. W. van de Wal
  • R. Weisse
Open Access


Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.


Surface Mass Balance Atmospheric Temperature Rise Glacier Acceleration Modest Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Fahnestock M, Joughin I (2008) Understanding glacier flow in changing times. Science 322:1061–1062CrossRefGoogle Scholar
  2. Allison I, Alley RB, Fricker HA, Thomas RH, Warner R (2009) Ice sheet mass balance and sea level. Antarct Sci 21. doi: 10.1017/S0954102009990,137 Google Scholar
  3. Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations 1957-1994: importance of salinity. J Geophys Res 107. doi: 10.1029/2001JC000,964 Google Scholar
  4. Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. doi: 10.1126/science.1169335 CrossRefGoogle Scholar
  5. Beersma JJ, Kwadijk J, Lammersen R (2008) River Rhine discharge. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 99–142. Available from
  6. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Qu C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  7. Cazenave A, Nerem RS (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi: 10.1029/2003RG000139 CrossRefGoogle Scholar
  8. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramilien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008. A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Glob Planet Change 65:83–88CrossRefGoogle Scholar
  9. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33:L11,502. doi: 10.1029/2006GL026369 Google Scholar
  10. Clark J, Primus JA (1988) Sea level change resulting from future retreat of ice sheets: an effect of CO2 warming of the climate. In: Tooley MJ, Shennan I (eds) Sea level changes. Basil Blackwell Publ., Intitute of British Geographers Special Publication, pp 356–370Google Scholar
  11. Clark PU, Huybers P (2009) Global change: interglacial and future sea level. Nature 462:856–857. doi: 10.1038/462856a CrossRefGoogle Scholar
  12. Cook AJ, Fox AJ, Vaughan DG, Ferrigno DG (2005) Retreating Glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544CrossRefGoogle Scholar
  13. Davis CH, Yonghong L, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308:1898–1901. doi: 10.1126/science.1110662 CrossRefGoogle Scholar
  14. Deltacommissie (2008) Working together with water: a living land builds for its future. Available from
  15. Duplessy JC, Roche DM, Kageyama M (2007) The deep ocean during the last interglacial period. Science 316:89–91. doi: 10.1126/science.1138582 CrossRefGoogle Scholar
  16. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Occasional Paper 58, University of Colorado, Institute of Arctic and Alpine Research. Available from
  17. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Int 46:647–667. doi: 10.1111/j.1365-246X.1976.tb01252.x Google Scholar
  18. Grinsted A, Moore JC, Jevrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn. doi: 10.1007/s00382–008–0507–2 Google Scholar
  19. Helsen MM, van den Broeke MR, van de Wal RSW, van de Berg WJ, van Meijgaard E, Davis CH, Li Y, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science 320:1626–1629. doi: 10.1126/science.1153894 CrossRefGoogle Scholar
  20. Holgate S, Jevrejeva S, Woodworth P, Brewer S (2007) Comment on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317. doi: 10.1126/science.1140942 Google Scholar
  21. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1:659–664. doi: 10.1038/ngeo316 CrossRefGoogle Scholar
  22. Houghton JT, Meira Filho LG, Callender BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Climate change 1995: the science of climate change. Contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  23. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, 881 ppGoogle Scholar
  24. Howat IM, Joughin I, Scambos TA (2007) Rapid Changes in Ice Discharge from Greenland Outlet Glaciers. Science 315:1559–1561, doi: 10.1126/science.1138478 CrossRefGoogle Scholar
  25. Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3:468–472. doi: 10.1038/ngeo890 CrossRefGoogle Scholar
  27. Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07,703. doi: 10.1029/2010GL042947 CrossRefGoogle Scholar
  28. Joughin I, Rignot E, E RC, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier. Geophys Res Lett 30:1706CrossRefGoogle Scholar
  29. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenlands Jakobshavn Isbrae glacier. Nature 432:608–610. doi: 10.1038/nature03130 CrossRefGoogle Scholar
  30. Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008a) Seasonal speedup along the Western Flank of the Greenland Ice Sheet. Science 320:781–783. doi: 10.1126/science.1153288 CrossRefGoogle Scholar
  31. Joughin I, Howat I, Alley RB, Ekstrom G, Fahnestock M, Moon T, Nettles M, Truffer M, Tsai VC (2008b) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J Geophys Res 113:F01,004. doi: 10.1029/2007JF000837 Google Scholar
  32. Kabat P, Fresco LO, Stive MJF, Veerman CP, van Alphen JSLJ, Parmet BWAH, Hazeleger W, Katsman CA (2009) Dutch coasts in transition. Nat Geosci 2:7. doi: 10.1038/ngeo572 CrossRefGoogle Scholar
  33. Katsman CA, Church JA, Kopp RE, Kroon D, Oppenheimer M, Plag HP, Rahmstorf S, Ridley J, von Storch H, Vaughan DG, van der Wal RSW (2008a) High-end projection for local sea level rise along the Dutch coast in 2100 and 2200. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 15–81. Available from
  34. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008b) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change. doi: 10.1007/s10584-008-9442-9 Google Scholar
  35. Khan SA, Wahr J, Stearns LA, Hamilton GS, van Dam T, Larson KM, Francis O (2007) Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys Res Lett 34:L21701. doi: 10.1029/2007GL031468 CrossRefGoogle Scholar
  36. Kooi H, Johnston P, Lambeck K, Smither C, Molendijk R (1998) Geological causes of recents (~100 yr) vertical land movement in the Netherlands. Tectonophysics 299:297–316CrossRefGoogle Scholar
  37. Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial. Nature 462:863–867. doi: 10.1038/nature08686 CrossRefGoogle Scholar
  38. Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2000) Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289:428–530CrossRefGoogle Scholar
  39. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24,402. doi: 10.1029/2004GL021533 CrossRefGoogle Scholar
  40. Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  41. Laurian A, Drijfhout S (2010) Response of the South Atlantic circulation to an abrupt Atlantic THC collapse. Clim Dyn. doi: 10.1007/s00382-010-0890-3 Google Scholar
  42. Lenderink G, Buishand TA, van Deursen WPA (2007) Estimation of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145–1159CrossRefGoogle Scholar
  43. Lenton TM (2006) Climate change to the end of the millennium. Clim Change 76:7–29CrossRefGoogle Scholar
  44. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2004) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  45. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20:1–17Google Scholar
  46. Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc 363:1313–1328CrossRefGoogle Scholar
  47. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289. doi: 10.1126/science.1130776 CrossRefGoogle Scholar
  48. Meehl G, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  49. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  50. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level ris ein the 21st century. Science 317:1064–1067. doi: 10.1126/science.1143906 CrossRefGoogle Scholar
  51. Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325CrossRefGoogle Scholar
  52. Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49:105–128CrossRefGoogle Scholar
  53. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes for sea-level change. Nat Geosci 2:471–478. doi: 10.1038/NGEO544 CrossRefGoogle Scholar
  54. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 409:1026–1029CrossRefGoogle Scholar
  55. Nick FM, Vieli A, Howat IM, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2:110–114. doi: 10.1038/NGEO394 CrossRefGoogle Scholar
  56. Ohmura A (2004) Cryosphere during the twentieth century, the state of the planet. IUGG Geophys Monogr 150:239–257CrossRefGoogle Scholar
  57. Otto-Bliesner BL, Marshall SJ, T OJ, Miller GH, Hu A, CAPE Last Interglaciation Project members (2006) Simulating Arctic climate warmth and ice-field retreat in the last interglaciation. Science 311:1751–1753. doi: 10.1126/science.1120808 CrossRefGoogle Scholar
  58. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750. doi: 10.1126/science.1115159 CrossRefGoogle Scholar
  59. Pfeffer WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J Geophys Res 112:F03S25. doi: 10.1029/2006JF000590 CrossRefGoogle Scholar
  60. Pfeffer WT, Harper J, ONeel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343CrossRefGoogle Scholar
  61. Plag HP, Juettner HU (2001) Inversion of global tide gauge data for present day ice load changes. Proceedings of the second international symposium on environmental research in the Arctic and 5th Ny-Alesund scientific seminar, pp 301–317Google Scholar
  62. Pritchard H, Vaughan DG (2007) Widespread acceleration of tide water glaciers on the Antarctic Peninsula. J Geophys Res 112:F03S29. doi: 10.1029/2006JF000597 CrossRefGoogle Scholar
  63. Pritchard H, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461. doi: 10.1038/nature08471 Google Scholar
  64. Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Geophys Res Letters 115:F01,010. doi  10.1029/2009JF001373 Google Scholar
  65. Rahmstorf S (2007a) A semi-empirical approach to projecting future sea level rise. Science 315:368–370. doi: 10.1126/science.1135456 CrossRefGoogle Scholar
  66. Rahmstorf S (2007b) Response to Comments on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317:1866. dOI: 10.1126/science.1141283 CrossRefGoogle Scholar
  67. Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208CrossRefGoogle Scholar
  68. Raper SCB, Braithwaite RJ (2005) The potential for sea level rise: new estimates from glacier and ice cap area and volume distribution. Geophys Res Lett 32:L05,502. doi: 10.1029/2004GL02181 Google Scholar
  69. Rignot EG, Kanagaratnam P (2006) Changes in the Velocity Structure of the Greenland Ice Sheet. Science 311:986–990CrossRefGoogle Scholar
  70. Rignot EG, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506CrossRefGoogle Scholar
  71. Rignot EG, Bamber J, van den Broeke M, Davis C, Li Y, van de Berg W, van Meijgaard E (2008) Recent Antarctic mass loss from radar interferometry and regional climate modelling. Nat Geosci 2:106–110. doi: 10.1038/ngeo102 CrossRefGoogle Scholar
  72. Rohling EJ, Grant K, Hemleben C, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea level rise during the last interglacial period. Nat Geosci 1:38–42. doi: 10.1038/ngeo.2007.28 CrossRefGoogle Scholar
  73. Scambos T, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18,402. doi: 10.1029/2004GL020670 CrossRefGoogle Scholar
  74. Schmith T, Johansen S, Thejll P (2007) Comment on “A Semi-Empirical Approach to Projecting Future Sea level Rise”. Science 317. doi: 10.1126/science.1143286 Google Scholar
  75. Shabalova MV, van Deursen WPA, Buishand TA (2004) Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim Res 23:233–246CrossRefGoogle Scholar
  76. Shackleton NJ, Hall MA, Vincent E (2000) Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15:565–569CrossRefGoogle Scholar
  77. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06,022. doi: 10.1029/2006JC004079 CrossRefGoogle Scholar
  78. Sterl A, Severijns C, Dijkstra HA, Hazeleger W, van Oldenborgh G, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008a) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14,703. doi: 10.1029/2008GL034071 CrossRefGoogle Scholar
  79. Sterl A, Weisse R, Lowe J, von Storch H (2008b) Winds and storm surges along the Dutch coast. In: Exploring high-end climate change scenarios for flood protection of the Netherlands. KNMI/Alterra, The Netherlands, pp 82–98. Available from
  80. Sterl A, van den Brink HW, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme North Sea storm surges in a changing climate. Ocean Sci 5:369–378. doi: 10.5194/os-5-369-2009 CrossRefGoogle Scholar
  81. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3:182–186. doi: 10.1038/ngeo764 CrossRefGoogle Scholar
  82. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabil W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated Sea-Level Rise from West Antarctica. Science 306:255–258. doi: 10.1126/science.1099650 CrossRefGoogle Scholar
  83. Thomas R, Frederick E, Krabill W, Manizade S, Martin C (2006) Progressive increase in ice loss from Greenland. Geophys Res Lett 33:L10,503. doi: 10.1029/2006GL026075 CrossRefGoogle Scholar
  84. van de Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change, applying volume-area scaling in combination with a high resolution GCM. Clim Dyn 18:359–366CrossRefGoogle Scholar
  85. van de Wal RSW, Boot W, van den Broeke M, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemans J (2008) Large and rapid velocity changes in the ablation zone of the Greenland ice sheet. Science 321:111–113CrossRefGoogle Scholar
  86. van den Hurk BJJM, Klein Tank AMG, Lenderink G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2006) KNMI climate change scenarios 2006 for the Netherlands. Technical report WR-2006-01, KNMI. Available from
  87. van den Hurk BJJM, Klein Tank AMG, Lenderink G, van Ulden AP, van Oldenborgh GJ, Katsman CA, van den Brink HW, Keller F, Bessembinder JJF, Burgers G, Komen GJ, Hazeleger W, Drijfhout SS (2007) New climate change scenarios for the Netherlands. Water Sci Technol 56:27–33. doi: 10.2166/wst.2007.533 Google Scholar
  88. Vaughan DG (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance. Arct Antarct Alp Res 38:147–152CrossRefGoogle Scholar
  89. Vaughan DG (2008) West Antarctic Ice Sheet collapse—the fall and rise of a paradigm. Clim Change 91:65–79. doi: 10.1007/s10584-008-9448-3 CrossRefGoogle Scholar
  90. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19,503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  91. Velicogna I, Wahr J (2005) Greenland mass balance from GRACE. Geophys Res Lett 32:L18,505. doi: 10.1029/2005GL023955 Google Scholar
  92. Velicogna I, Wahr J (2006a) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331CrossRefGoogle Scholar
  93. Velicogna I, Wahr J (2006b) Measurements of time-variable gravity shows mass loss in Antarctica. Science 311:1754. doi: 10.1126/science.1123785 CrossRefGoogle Scholar
  94. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  95. Vellinga P, Katsman CA, Sterl A, Beersma JJ, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Marinova N, Oppenheimer M, Plag HP, Rahmstorf S, Ridley J, von Storch H, Vaughan DG, van der Wal RSW, Weisse R (2008) Exploring high-end climate change scenarios for flood protection of The Netherlands. International scientific assessment carried out at request of the delta committee. Scientific Report WR-2009-05. KNMI/Alterra, The Netherlands. Available from
  96. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21,527–21,532. doi: 10.1073/pnas.0907765106 CrossRefGoogle Scholar
  97. von Storch H, Zorita E, Gonzalez-Rouco F (2009) Relationships between global mean sea-level and global mean temperature and heat-flux in a climate simulation of the past millennium. Ocean Dyn 58:227–236. doi: 10.1007/s10236-088-0142-9 CrossRefGoogle Scholar
  98. WASA-Group (1998) Changing waves and storms in the Northeast Atlantic? Bull Am Meteorol Soc 79:741–760CrossRefGoogle Scholar
  99. Wigley TML (2005) The climate change commitment. Science 307:1766–1769CrossRefGoogle Scholar
  100. Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Shum CK (1998) Antarctic elevation change from 1992 to 1996. Science 282:456–458. doi: 10.1126/science.282.5388.456 CrossRefGoogle Scholar
  101. Wingham DJ, Shepherd A, Muir A, Marshall G (2006) Mass balance of the Antarctic ice sheet. Philos Trans R Soc 364:1627–1635CrossRefGoogle Scholar
  102. Woodward RS (1888) On the form and position of mean sea level. US Geol Surv Bull 48:87–170Google Scholar
  103. Woth K (2005) North Sea storm surge statistics based on projections in a warmer climate: how important are driving GCM and the chosen emission scenario? Geophys Res Lett 32:L22,708. doi: 10.1029/2005GL023762 CrossRefGoogle Scholar
  104. Wouters B, Chambers D, Schrama E (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20,501. doi: 10.1029/2008GL034816 CrossRefGoogle Scholar
  105. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266. doi: 10.1038/NGEO462 CrossRefGoogle Scholar
  106. Zagwijn WH (1983) Sea level changes in The Netherlands during the Eemian. Geol Mijnb 62:437–450Google Scholar
  107. Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quat Sci Rev 15:451–469CrossRefGoogle Scholar
  108. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface meltininduced acceleration of greenland ice-sheet flow. Science 218:218–222CrossRefGoogle Scholar
  109. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, co-authors (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. J Glaciol 51:509–527CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Caroline A. Katsman
    • 1
    Email author
  • A. Sterl
    • 2
  • J. J. Beersma
    • 2
  • H. W. van den Brink
    • 3
  • J. A. Church
    • 4
  • W. Hazeleger
    • 2
  • R. E. Kopp
    • 5
  • D. Kroon
    • 6
    • 7
  • J. Kwadijk
    • 8
  • R. Lammersen
    • 9
  • J. Lowe
    • 10
  • M. Oppenheimer
    • 5
  • H. -P. Plag
    • 11
  • J. Ridley
    • 10
  • H. von Storch
    • 12
  • D. G. Vaughan
    • 13
  • P. Vellinga
    • 14
  • L. L. A. Vermeersen
    • 15
  • R. S. W. van de Wal
    • 16
  • R. Weisse
    • 12
  1. 1.Royal Netherlands Meteorological Institute (KNMI)Global Climate DivisionAE De BiltThe Netherlands
  2. 2.KNMIDe BiltThe Netherlands
  3. 3.Meteo Consult BVWageningenThe Netherlands
  4. 4.Centre for Australian Weather and Climate ResearchA partnership between CSIRO and the Bureau of Meteorology, and the Antarctic Climate and Ecosystems CRCHobartAustralia
  5. 5.Woodrow Wilson School of Public and International Affairs and Department of GeosciencesPrinceton UniversityPrincetonUSA
  6. 6.School of GeoSciencesUniversity of EdinburghEdinburghScotland
  7. 7.Free UniversityAmsterdamThe Netherlands
  8. 8.DeltaresDelftThe Netherlands
  9. 9.Rijkswaterstaat Waterdienst LelystadThe Netherlands
  10. 10.Met Office Hadley CentreMet OfficeUK
  11. 11.Nevada Bureau of Mines and Geology and Seismological LaboratoryUniversity of NevadaCarson CityUSA
  12. 12.GKSS Research CenterInstitute for Coastal ResearchGeesthachtGermany
  13. 13.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
  14. 14.AlterraWageningen University and Research CentreWageningenThe Netherlands
  15. 15.DEOSDelft University of TechnologyDelftThe Netherlands
  16. 16.Institute for Marine and Atmospheric ResearchUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations