Climatic Change

, Volume 109, Issue 3–4, pp 745–790 | Cite as

A review of climate geoengineering proposals



Climate geoengineering proposals seek to rectify the current radiative imbalance via either (1) reducing incoming solar radiation (solar radiation management) or (2) removing CO2 from the atmosphere and transferring it to long-lived reservoirs (carbon dioxide removal). For each option, we discuss its effectiveness and potential side effects, also considering lifetime of effect, development and deployment timescale, reversibility, and failure risks. We present a detailed review that builds on earlier work by including the most recent literature, and is more extensive than previous comparative frameworks. Solar radiation management propsals are most effective but short-lived, whilst carbon dioxide removal measures gain effectiveness the longer they are pursued. Solar radiation management could restore the global radiative balance, but must be maintained to avoid abrupt warming, meanwhile ocean acidification and residual regional climate changes would still occur. Carbon dioxide removal involves less risk, and offers a way to return to a pre-industrial CO2 level and climate on a millennial timescale, but is potentially limited by the CO2 storage capacity of geological reservoirs. Geoengineering could complement mitigation, but it is not an alternative to it. We expand on the possible combinations of mitigation, carbon dioxide removal and solar radiation management that might be used to avoid dangerous climate change.


Southern Ocean Ocean Acidification Sulphate Aerosol West African Monsoon Solar Radiation Management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbari H, Menson S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Climatic Change 94:275–286CrossRefGoogle Scholar
  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166CrossRefGoogle Scholar
  4. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cycles 8(1):65–80CrossRefGoogle Scholar
  5. Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190CrossRefGoogle Scholar
  6. Angel R (2006) Feasibility of cooling the earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc Natl Acad Sci USA 103(46):17184–17189CrossRefGoogle Scholar
  7. Apak R (2007) Alternative solution to global warming arising from CO2 emissions - Partial neutralization of tropospheric H2CO3 with NH3. Environ Prog 26(4):355–359CrossRefGoogle Scholar
  8. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20:GB2017CrossRefGoogle Scholar
  9. Avgoustidi V (2007) Dimethyl sulphide production in a double-CO2 world. PhD thesis, University of East AngliaGoogle Scholar
  10. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555CrossRefGoogle Scholar
  11. Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105(22):7664–7669CrossRefGoogle Scholar
  12. Batjes NH (1995) A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (Version 1.0). International Soil Reference and Information Centre, Wageningen, The Netherlands. Working Paper and Preprint 95/10bGoogle Scholar
  13. Betts RA (2000) Offset of the potential carbon sink from boreal afforestation by decreases in surface albedo. Nature 408:187–190CrossRefGoogle Scholar
  14. Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi: 10.3334/CDIAC/00001
  15. Bopp L, Aumont O, Belviso S, Bain S (2008) Modelling the effect of iron fertilization on dimethylsulphide emissions in the Southern Ocean. Deep-sea Res II 55:901–912CrossRefGoogle Scholar
  16. Bower K, Choularton T, Latham J, Sahraei J, Salter S (2006) Computational assessment of a proposed technique for global warming mitigation via albedo enhancement of marine stratocumulus clouds. Atmos Res 82(1–2):328–336CrossRefGoogle Scholar
  17. Boyd PW (2008a) Ranking geo-engineering schemes. Nature Geosciences 1:722–724CrossRefGoogle Scholar
  18. Boyd PW (2008b) Introduction and synthesis. Mar Ecol Prog Ser 364:213–218CrossRefGoogle Scholar
  19. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617CrossRefGoogle Scholar
  20. Buesseler KO, Doney SC, Karl DM, Boyd PW, Caldeira K, Chai F, Coale KH, de Baar HJW, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Naqvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319:162CrossRefGoogle Scholar
  21. Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27:225–228CrossRefGoogle Scholar
  22. Caldeira K, Wood L (2008) Global and arctic climate engineering: numerical model studies. Phil Trans R Soc A 366:4039–4056CrossRefGoogle Scholar
  23. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870CrossRefGoogle Scholar
  24. Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609CrossRefGoogle Scholar
  25. Carlin A (2007) Global climate change control: is there a better strategy than reducing greenhouse gas emissions? U Penn Law Rev 155:1401–1497Google Scholar
  26. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  27. Chisholm SW, Falkowski PG, Cullen JJ (2001) Oceans: dis-crediting ocean fertilization. Science 294:309–310CrossRefGoogle Scholar
  28. Cicerone RJ (2006) Geoengineering: Encouraging research and overseeing implementation. Climatic Change 77:221–226CrossRefGoogle Scholar
  29. Courtland R (2008) Planktos dead in the water. Nature 451:879Google Scholar
  30. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  31. Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215CrossRefGoogle Scholar
  32. Crutzen PJ (2006) Albedo enhancement by stratospheric sulphur injections: a contribution to resolve a policy dilemma? Climatic Change 77(3–4):211–219CrossRefGoogle Scholar
  33. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRefGoogle Scholar
  34. Cullen JJ, Boyd PW (2008) Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Mar Ecol Prog Ser 364:295–301CrossRefGoogle Scholar
  35. De Baar HJW, Gerringa LJA, Lann P, Timmermans KR (2008) Efficiency of carbon removal per added iron in ocean iron fertilisation. Mar Ecol Prog Ser 364:269–282CrossRefGoogle Scholar
  36. Deman KL (2008) Climate change, ocean processes and ocean iron fertilisation. Mar Ecol Prog Ser 364:219–225CrossRefGoogle Scholar
  37. Elliot S, Lackner KS, Ziock HJ, Dubey MK, Hanson HP, Barr S (2001) Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys Res Lett 28:1235–1238CrossRefGoogle Scholar
  38. Fleming JR (2006a) Global climate change and human agency: inadvertent influence and ‘Archimedean’ interventions. In: Fleming JR, Jankovic V, Coen DR (eds) Intimate universality: local and global themes in the history of weather and climate. Science History Publications, Sagamore Beach, pp 223–248Google Scholar
  39. Fleming JR (2006b) Pathological history of weather and climate modification: three cycles of promise and hype. Hist Stud Phys Sci 37:3–25Google Scholar
  40. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin B, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  41. Gaskill A (2004) Summary of Meeting with US DOE to discuss Geoengineering options to prevent abrupt and long-term climate change. Available via Accessed 19 Jan 2009
  42. Gilabert MA, Gonzalez-Piqueras J, Garcia-Haro FJ, Melia J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82:303–310CrossRefGoogle Scholar
  43. Glibert PM, Azanza R, Burford M, Furuya K, Aba E, Al-Azri A, Al-Yamani F, Andersen P, Anderson DM, Beardall J, Berg GM, Brand L, Bronk D, Brookes J, Burkholder JM, Cembella A, Cochlan WP, Collier JL, Collos Y, Diaz R, Doblin M, Drennen T, Dyhrman S, Fukuyo Y, Furnas M, Galloway J, Granli E, Ha DV, Hallegraeff G, Harrison J, Harrison PJ, Heil CA, Heimann K, Howarth R, Jauzein C, Kana AA, Kana TM, Kim H, Kudela R, Legrand C, Mallin M, Mulholland M, Murray S, O’Neil J, Pitcher G, Qi Y, Rabalais N, Raine R, Seitzinger S, Salomon PS, Solomon C, Stoecker DK, Usup G, Wilson J, Yin K, Zhou M, Zhu M (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56:1049–1056CrossRefGoogle Scholar
  44. Gnanadesikan A, Marinov I (2008) Export is not enough: nutrient cycling and carbon sequestration. Mar Ecol Prog Ser 364:289–294CrossRefGoogle Scholar
  45. Gnanadesikan A, Sarimento JL, Slater RD (2003) Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob Biogeochem Cycles 17(2):1050CrossRefGoogle Scholar
  46. Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37:10–14CrossRefGoogle Scholar
  47. Govindasamy B, Caldeira K (2000) Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27(14):2141–2144CrossRefGoogle Scholar
  48. Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29(22):2061CrossRefGoogle Scholar
  49. Govindasamy B, Caldeira K, Duffy PB (2003) Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Glob Planet Change 37(1–2):157–168CrossRefGoogle Scholar
  50. Gregory JM, Huybrechts P (2006) Ice sheet contributions to future sea-level change. Phil Trans R Soc A 364:1709–1731CrossRefGoogle Scholar
  51. Gregory JM, Huybrechts P, Raper SCB (2004) Threatened loss of the Greenland ice sheet. Nature 428:616CrossRefGoogle Scholar
  52. Hamwey RM (2007) Active amplification of the terrestrial albedo to mitigate climate change: an exploratory study. Mitig Adapt Strategies Glob Chang 12 (4):419–439CrossRefGoogle Scholar
  53. Hanna E, Cappelen J, Fettweis X, Huybrechts P, Luckman A, Ribergaard MH (2009) Hyrological response of the Greenland ice sheet: the role of oceanographic warming. Hydrol Process 23:7–30CrossRefGoogle Scholar
  54. Hanson J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer D, Zachos J (2008) Target atmospheric CO2: where should humanity aim? Open Atmos J 2:217–231CrossRefGoogle Scholar
  55. Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res 113:C04028CrossRefGoogle Scholar
  56. Harvey LDD (2010) Energy and the new reality. Energy efficiency and the demand for energy services, vol 1. Earthscan, LondonGoogle Scholar
  57. Harvey LDD, Huang Z (1995) Evaluation of the potential impact of methane clathrate destabilization on future global warming. J Geophys Res 100:2905–2926CrossRefGoogle Scholar
  58. Hofmann M, Schellnhuber H-J (2009) Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci USA 106:3017–3022CrossRefGoogle Scholar
  59. Hopkins FE, Turner SM, Nightingale PD, Steinke M, Liss PS (2010) Ocean acidification and marine trace gas emissions. Proc Natl Acad Sci U S A 107(2):760–765CrossRefGoogle Scholar
  60. Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USAGoogle Scholar
  61. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci USA 103(33):12291–12295CrossRefGoogle Scholar
  62. Huesemann MH (2008) Ocean fertilisation and other climate change mitigation strategies: an overview. Mar Ecol Prog Ser 364:243–250CrossRefGoogle Scholar
  63. IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  64. IPCC (2005) Carbon dioxide capture and storage. Cambridge University Press, CambridgeGoogle Scholar
  65. IPCC (2007a) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  66. IPCC (2007b) Climate Change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  67. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71CrossRefGoogle Scholar
  68. Jin M, Dickinson R, Zhang D-L (2005) The footprint of urban areas on global climate as characterized by MODIS. J Climate 18:1151–1565CrossRefGoogle Scholar
  69. Jin X, Gruber N, Frenzel H, Dooley SC, McWilliams JC (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5:385–406CrossRefGoogle Scholar
  70. Johnson M, Vaughan NE, Goodwin P, Goldblatt C, Roudesli S, Lenton TM (2008) Why NH3 is not a candidate reagent for ambient CO2 fixation: a response to ‘Alternative solution to global warming arising from CO2 emissions—partial neutralization of tropospheric H2CO3 with NH3’ by R. Apak [Environmental Progress, 26, 355–359 (2007)]. Environ Prog 27:412–417CrossRefGoogle Scholar
  71. Karl DM, Letelier RM (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268CrossRefGoogle Scholar
  72. Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy Environ 25:245–284CrossRefGoogle Scholar
  73. Keith DW (2001) Geoengineering. Nature 409:420CrossRefGoogle Scholar
  74. Keith DW, Dowlatabadi H (1992) A serious look at geoengineering. EOS Trans Am Geophys Union 73:289–296CrossRefGoogle Scholar
  75. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Climatic Change 74:17–45CrossRefGoogle Scholar
  76. Kellogg WW, Schneider SH (1974) Climate stabilization: for better or for worse? Science 186:1163–1172CrossRefGoogle Scholar
  77. Kharecha PA, Hansen JE (2008) Implications of peak oil for atmospheric CO2 and climate. Glob Biogeochem Cycles GB22:3012CrossRefGoogle Scholar
  78. Kheshgi HS (1995) Sequestering Atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20(9):915–922CrossRefGoogle Scholar
  79. Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78(2):197–208CrossRefGoogle Scholar
  80. Koppmann R (ed) (2007) Volatile organic compounds in the atmosphere. Blackwell, OxfordGoogle Scholar
  81. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619CrossRefGoogle Scholar
  82. Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD, Kelly-Gerreyn BA, Lucas M, Popova EE, Sanders R, Shepherd JG, Smythe-Wright D, Yool A (2008) Ocean fertilisation: a potential means of geoengineering? Phil Trans R Soc A 366:3919–3945CrossRefGoogle Scholar
  83. Latham J (1990) Control of global warming? Nature 347:339–340CrossRefGoogle Scholar
  84. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3(2–4):52–58CrossRefGoogle Scholar
  85. Latham J, Rasch P, Chen C-C, Kettles L, Gadian A, Gettelman A, Morrison H, Bower K, Choularton T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil Trans R Soc A 366:3969–3987CrossRefGoogle Scholar
  86. Law CS (2008) Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar Ecol Prog Ser 364:283–288CrossRefGoogle Scholar
  87. Le Quere C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738CrossRefGoogle Scholar
  88. Le Quere C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2008) Responses to comments on “Saturation of the southern ocean CO2 sink due to recent climate change”. Science 319:507cGoogle Scholar
  89. Lehmann J, Gaunt J, Randon M (2006) Bio-char sequestration in terrestrial systems—a review. Mitig Adapt Strategies Glob Chang 11:403–427CrossRefGoogle Scholar
  90. Leinen M (2008) Building relationships between scientists and business in ocean iron fertilization. Mar Ecol Prog Ser 364:251–256CrossRefGoogle Scholar
  91. Lenton TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B 52:1159–1188CrossRefGoogle Scholar
  92. Lenton TM, Britton C (2006) Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycles 20:GB3009Google Scholar
  93. Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys 9:5539–5561CrossRefGoogle Scholar
  94. Lenton TM, Watson AJ (2000) Redfield revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Glob Biogeochem Cycles 14:225–248CrossRefGoogle Scholar
  95. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–1793CrossRefGoogle Scholar
  96. Levi BG (2008) Will desperate climates call for desperate geoengineering? Phys Today 61:26–28CrossRefGoogle Scholar
  97. Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM (1997) Marine sulphur emissions. Phil Trans R Soc B 352 (1350):159–169CrossRefGoogle Scholar
  98. Lovelock JE, Rapley CG (2007) Ocean pipes could help the earth to cure itself. Nature 449(7161):403–403CrossRefGoogle Scholar
  99. Lunt DJ, Ridgewell A, Valdes PJ, Seale A (2008) “Sunshade world”: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett 35:L12710CrossRefGoogle Scholar
  100. MacCracken MC (2006) Geoengineering: worthy of cautious evaluation? Climatic Change 77(3–4):235–243CrossRefGoogle Scholar
  101. Mackenzie FT, Ver LM, Lerman A (2002) Century-scale nitrogen and phosphorous controls of the carbon cycle. Chem Geol 190:13–32CrossRefGoogle Scholar
  102. Marchetti C (1977) On geoengineering and the CO2 problem. Climatic Change 1:59–68CrossRefGoogle Scholar
  103. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Palaeoceanography 5:1–13CrossRefGoogle Scholar
  104. Matear RJ, Elliot B (2004) Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. J Geophys Res 109:C04001CrossRefGoogle Scholar
  105. Matthews HD, Caldeira K (2007) Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci U S A 104(24):9949–9954CrossRefGoogle Scholar
  106. Matthews HD, Gillett NP, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832CrossRefGoogle Scholar
  107. McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res-Sol Ea 111(B12):B12201CrossRefGoogle Scholar
  108. Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Climatic Change 88:251–265CrossRefGoogle Scholar
  109. Naik V, Wuebbles DJ, Delucia EH, Foley JA (2003) Influence of geoengineered climate on the terrestrial biosphere. Environ Manage 32(3):373–381CrossRefGoogle Scholar
  110. National Academy of Sciences (1992) Policy implications of greenhouse warming: mitigation, adaptation, and the science base. National Academy Press, WashingtonGoogle Scholar
  111. Nel A (2005) Atmosphere: enhanced: air pollution-related illness: effects of particles. Science 308(5723):804–806CrossRefGoogle Scholar
  112. Olson JS, Watts JA, Allison LJ (1985) Major world ecosystem complexes ranked by carbon in live vegetation. Carbon Dioxide Information Analysis Center, Oak Ridge, Tenn. USA, NDP-017Google Scholar
  113. Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nature Geoscience 2:692–695CrossRefGoogle Scholar
  114. Oman L, Robock A, Stenchikov GL, Schmidt GA, Ruedy R (2005) Climatic response to high-latitude volcanic eruptions. J Geophys Res 110:D13103CrossRefGoogle Scholar
  115. Orbach MK (2008) Cultural context of ocean fertilisation. Mar Ecol Prog Ser 364:235–242CrossRefGoogle Scholar
  116. Orr J, Sarmiento JL (1992) Potential of marine macroalgae as a sink for CO2: constraints from a 3-D general circulation model of the global ocean. Water Air Soil Pollut 64:405–421CrossRefGoogle Scholar
  117. Pacala S, Socolow RH (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRefGoogle Scholar
  118. Pearson J, Oldson J, Levin E (2006) Earth rings for planetary environment control. Acta Astronaut 58:44–57CrossRefGoogle Scholar
  119. Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714CrossRefGoogle Scholar
  120. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  121. Peyrille P, Lafore J-P, Redelsperger J-L (2007) An idealized two-dimensional framework to study the West African monsoon. Part I: validation and key controlling factors. J Atmos Sci 64:2765–2782CrossRefGoogle Scholar
  122. Rajagopal D, Sexton SE, Roland-Holst D, Zilberman D (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ Res Lett 2:044004CrossRefGoogle Scholar
  123. Rasch PJ, Crutzen PJ, Coleman DB (2008a) Exploring the geoengineering of climate using stratospheric sulphate aerosols: the role of particle size. Geophys Res Lett 35:L02809CrossRefGoogle Scholar
  124. Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L, Chen C-C, Stenchikov GL, Garcia RR (2008b) An overview of geoengineering of climate using stratospheric sulphate aerosols. Phil Trans R Soc A 366:4007–4037CrossRefGoogle Scholar
  125. Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energ Convers Manage 40:1803–1813CrossRefGoogle Scholar
  126. Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32:1471–1477CrossRefGoogle Scholar
  127. Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. P Natl Acad USA 104(24):10288–10293CrossRefGoogle Scholar
  128. Read P (2008) Biosphere carbon stock management: addressing the threat of abrupt climate change in the next few decades: an editorial essay. Climatic Change 87:305–320CrossRefGoogle Scholar
  129. Read P, Parshotam A (2007) Holistic greenhouse gas management strategy (with reviewers’ comments and authors’ rejoinders). Institute of Policy Studies Working Paper 07/1, Victoria University of Wellington, Wellington, New Zealand. Available via Accessed 19 Jan 2009
  130. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  131. Ridgwell A, Singarayer JS, Hetherington AM, Valdes PJ (2009) Tackling regional climate change by leaf albedo bio-geoengineering. Curr Biol 19:146–150CrossRefGoogle Scholar
  132. Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101CrossRefGoogle Scholar
  133. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371CrossRefGoogle Scholar
  134. Salter S (2006) Sea-going hardware for the implementation of the cloud albedo control method for the reduction of global warming. In: EIC climate change conference, Ottawa, CanadaGoogle Scholar
  135. Salter S, Sortino G, Latham J (2008) Sea-going hardware for the cloud albedo method of reversing global warming. Phil Trans R Soc A 366:3989–4006CrossRefGoogle Scholar
  136. Sarmiento JL, Gruber N (2006) Ocean biogeochemical cycles. Princeton University Press, PrincetonGoogle Scholar
  137. Schneider SH (1996) Geoengineering: could—or should—we do it? Climatic Change 33:291–302CrossRefGoogle Scholar
  138. Schneider SH (2001) Earth systems engineering and management. Nature 409(6818):417–421CrossRefGoogle Scholar
  139. Schneider SH (2008) Geoengineering: could we or should we make it work? Phil Trans R Soc A 366:3843–3862CrossRefGoogle Scholar
  140. Shepherd JG, Iglesias-Rodriguez D, Yool A (2007) Geo-engineering might cause, not cure, problems. Nature 449:781CrossRefGoogle Scholar
  141. Slingo A (1990) Sensitivity of the earth’s radiation budget to changes in low clouds. Nature 343:49–51CrossRefGoogle Scholar
  142. Smetacek V, Naqvi SWA (2008) The next generation of iron fertilization experiments in the Southern Ocean. Phil Trans R Soc A 366:3947–3967CrossRefGoogle Scholar
  143. Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuna JC, Grainger RG, Lambert A, Thomason L (1998) Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res-Atmos 103(D12):13837–13857CrossRefGoogle Scholar
  144. Stenchikov GL, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandra S (2002) Arctic oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res 107(D24):4803CrossRefGoogle Scholar
  145. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107CrossRefGoogle Scholar
  146. Sterman JD (2008) Risk communication on climate: mental models and mass balance. Science 322:532-533CrossRefGoogle Scholar
  147. Stern DI (2005) Global sulphur emissions from 1850 to 2000. Chemosphere 58:163–175CrossRefGoogle Scholar
  148. Taha H (2005) Urban Surface modification as a potential ozone-air quality improvement strategy in California - Phase one: initial mesoscale modelling. Public Interest Energy Research Program Report: CEC-500–2005-128, California Energy Commission, Sacramento, CA, USAGoogle Scholar
  149. Taha H (2008) Urban surface modification as a potential ozone air-quality improvement strategy in California: a mesoscale modelling study. Bound-Lay Meteorol 127:219–239CrossRefGoogle Scholar
  150. The Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. The Royal Society, LondonGoogle Scholar
  151. Thingstad TF, Bellerby RGJ, Bratbak G, Børsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa R-A, Skjoldal EF, Tanaka T, Thyrhaug R, Topper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–391CrossRefGoogle Scholar
  152. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  153. Tickell O (2008) Kyoto2, how to manage the global greenhouse. Zed, LondonGoogle Scholar
  154. Tilmes S, Muller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204CrossRefGoogle Scholar
  155. Trenberth KE, Dai A (2007) Effects of mount Pinatubo volcanic eruption on the hydrological cycle as an analogue of geoengineering. Geophys Res Lett 34(15):L15702CrossRefGoogle Scholar
  156. Tsvetsinskaya EA, Schaaf CB, Gao F, Strahler AH, Dickinson RE, Zeng X, Lucht W (2002) Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian Peninsula. Geophys Res Lett 29:1353CrossRefGoogle Scholar
  157. Tuck AF, Donaldson DJ, Hitchman MH, Richard EC, Tervahattu H, Vaida V, Wilson JC (2008) On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Climatic Change 90:315–331CrossRefGoogle Scholar
  158. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34 (7):1149–1152CrossRefGoogle Scholar
  159. Twomey S (1991) Aerosols, clouds and radiation. Atmos Environ, A Gen 25(11):2435–2442Google Scholar
  160. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  161. Urban MC, Philips BL, Skelly DK, Shine R (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 131:E134–E148CrossRefGoogle Scholar
  162. Vaughan NE, Lenton TM, Shepherd J (2009) Climate change mitigation: trade-offs between delay and strength of action required. Climatic Change 96:29–43CrossRefGoogle Scholar
  163. Vogt M, Vallina S, von Glasow R (2008) New directions: correspondence on “enhancing the natural cycle to slow global warming”. Atmos Environ 42 (19):4803–4805CrossRefGoogle Scholar
  164. Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733CrossRefGoogle Scholar
  165. Watson AJ, Boyd PW, Turner SM, Jickells TD, Liss PS (2008) Designing the next generation of ocean iron fertilisation experiments. Mar Ecol Prog Ser 364:303–309CrossRefGoogle Scholar
  166. White A, Bjorkman K, Grabowski E, Letelier R, Poulos S, Watkins B, Karl D (2010) An open ocean trial of controlled upwelling using wave pump technology. J Atmos Ocean Technol 27:385–396CrossRefGoogle Scholar
  167. Wigley TML (1989) Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339:365–367CrossRefGoogle Scholar
  168. Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilization. Science 314:452–454CrossRefGoogle Scholar
  169. Wild M, Grieser J, Schar C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706CrossRefGoogle Scholar
  170. Wingenter OW, Haase KB, Strutton P, Friederich G, Meinardi S, Blake DR, Rowland FS (2004) Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulphide during the southern ocean iron enrichment experiments. Proc Natl Acad Sci USA 101(23):8537–8541CrossRefGoogle Scholar
  171. Wingenter OW, Elliot SM, Blake DR (2007) New directions: enhancing the natural sulphur cycle to slow global warming. Atmos Environ 41(34):7373–7375CrossRefGoogle Scholar
  172. Wingenter OW, Elliot SM, Blake DR (2008) Authors response to the above comment by M. Vogt et al on “New directions: enhancing the natural cycle to slow global warming”. Atmos Environ 42:4803–4809CrossRefGoogle Scholar
  173. Wolff EW, Barbante C, Becagli S, Bigler M, Boutron CF, Castellano E, de Angelis M, Federer U, Fischer H, Fundel F, Hansson M, Hutterli M, Jonsell U, Karlin T, Kaufmann P, Lambert F, Littot GC, Mulvaney R, Rothlisberger R, Ruth U, Severi M, Siggard-Andersen ML, Sime CL, Steffensen JP, Stocker TF, Traversi R, Twarloh B, Udisti R, Wagenbach D, Wegner A (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29:285–295. doi: 10.1016/j.quascirev.2009.06.013 CrossRefGoogle Scholar
  174. Woodhouse MT, Mann GW, Carslaw KS, Boucher O (2008) New directions: the impact of oceanic iron fertilisation on cloud condensation nuclei. Atmos Environ 42:5728–5730CrossRefGoogle Scholar
  175. World Energy Council (2007) 2007 survey of energy resources. World Energy Council, London. Available via Accessed 15 Oct 2009
  176. Young E (2007) Can ‘fertilising’ the ocean combat climate change? New Sci 2621:42–45CrossRefGoogle Scholar
  177. Zeebe RE, Archer D (2005) Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophys Res Lett 32:L09703CrossRefGoogle Scholar
  178. Zeebe RE, Zachos JC, Caldeira K, Tyrell T (2008) Carbon emissions and ocean acidification. Science 321:51–52CrossRefGoogle Scholar
  179. Zeman F (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563CrossRefGoogle Scholar
  180. Zeman F (2008) Experimental results for capturing CO2 from the atmosphere. AICHE J 54:1396–1399CrossRefGoogle Scholar
  181. Zhou S Flynn PC (2005) Geoengineering downwelling ocean currents: a cost assessment. Climatic Change 71(1–2):203–220CrossRefGoogle Scholar
  182. Zugspitze Declaration (2008) Zugspitze declaration on the responsibility of humanity for the functioning of the Earth system. Resolved by participants of the workshop in Earth system engineering: the art of dealing wisely with the planet Earth, November 2008. Available via Accessed on 19 Jan 2009

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Environmental Sciences and Tyndall Centre for Climate Change ResearchUniversity of East AngliaNorwichUK

Personalised recommendations