Climatic Change

, Volume 108, Issue 1–2, pp 261–289 | Cite as

Expected changes in agroclimatic conditions in Central Europe

  • Miroslav TrnkaEmail author
  • Josef Eitzinger
  • Daniela Semerádová
  • Petr Hlavinka
  • Jan Balek
  • Martin Dubrovský
  • Gerhard Kubu
  • Petr Štěpánek
  • Sabina Thaler
  • Martin Možný
  • Zdeněk Žalud


During the past few decades, the basic assumption of agroclimatic zoning, i.e., that agroclimatic conditions remain relatively stable, has been shattered by ongoing climate change. The first aim of this study was to develop a tool that would allow for effective analysis of various agroclimatic indicators and their dynamics under climate change conditions for a particular region. The results of this effort were summarized in the AgriClim software package, which provides users with a wide range of parameters essential for the evaluation of climate-related stress factors in agricultural crop production. The software was then tested over an area of 114,000 km2 in Central Europe. We have found that by 2020, the combination of increased air temperature and changes in the amount and distribution of precipitation will lead to a prolonged growing season and significant shifts in the agroclimatic zones in Central Europe; in particular, the areas that are currently most productive will be reduced and replaced by warmer but drier conditions in the same time the higher elevations will most likely experience improvement in their agroclimatic conditions. This positive effect might be short-lived, as by 2050, even these areas might experience much drier conditions than observed currently. Both the rate and the scale of the shift are amazing as by 2020 (assuming upper range of the climate change projections) only 20–38% of agriculture land in the evaluated region will remain in the same agroclimatic and by 2050 it might be less than 2%. On the other hand farmers will be able to take advantage of an earlier start to the growing season, at least in the lowland areas, as the proportion of days suitable for sowing increases. As all of these changes might occur within less than four decades, these issues could pose serious adaptation challenges for farmers and governmental policies. The presented results also suggest that the rate of change might be so rapid that the concept of static agroclimatic zoning itself might lose relevance due to perpetual change.


Czech Republic Snow Cover Climate Change Scenario Frost Damage Shuttle Radar Topography Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Allen GA, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Rome, Irrigation and Drainage Paper No 56, p 300Google Scholar
  2. Allen GA, Walter IA, Elliot RL, Howell TA (2005) ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers, Reston, p 216Google Scholar
  3. Assad ED, Pintor HS, Junior JZ et al (2004) Climatic changes impact in agroclimatic zoning of coffee in Brazil. Pesqui Agropecu Bras 39:1057–1064CrossRefGoogle Scholar
  4. Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2009) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol 97:297–315CrossRefGoogle Scholar
  5. BMLFW - Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2007) Digitaler Hydrologischer Atlas von Österreich. BMLFW, ViennaGoogle Scholar
  6. Brown JA (1976) Shortening of growing season in the US corn belt. Nature 260:420–421CrossRefGoogle Scholar
  7. Calanca P (2007) Climate change and drought occurrence in the Alpine region. How severe are becoming the extremes? Glob Planet Change 57:151–160CrossRefGoogle Scholar
  8. Chmielewski FM, Köhn W (2000) Impact of weather on yield and yield components of winter rye. Agric For Meteorol 102:101–112CrossRefGoogle Scholar
  9. Cooper G, McGechan MB, Vinten JA (1997) The influence of a changed climate on soil workability and available workdays in Scotland. J Agric Eng Res 68:253–269CrossRefGoogle Scholar
  10. Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130CrossRefGoogle Scholar
  11. Dubrovský M, Buchtele J, Zalud Z (2004) High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Clim Change 63:145–179CrossRefGoogle Scholar
  12. Dubrovský M, Nemešová I, Kalvová J (2005) Uncertainties in climate change scenarios for the Czech Republic. Clim Res 29:139–156CrossRefGoogle Scholar
  13. Dvořák V, Hladný J, Kašpářek L (1997) Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic. Clim Change 36:93–106CrossRefGoogle Scholar
  14. Eitzinger J, Štastná M, Žalud Z, Dubrovský M (2003) A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric Water Manag 61:163–234CrossRefGoogle Scholar
  15. Eitzinger J, Kersebaum C, Formayer H (2009) Landwirtschaft im Klimawandel. Agrimedia, Clenze, pp 129–150 (in German)Google Scholar
  16. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183 CrossRefGoogle Scholar
  17. Fisher G, van Velthuizen H, Nachtergaele F, Medow S (2000) Global agro-ecological zones (Global-AEZ). CD-ROM FAO/IIASA, Retrieved 22.2.2008 from:
  18. Harvey LDD, Gregory J, Hoffert M, Jain A et al (1997) An introduction to simple climate models used in the IPCC second assessment report. IPCC Tech Paper 2, Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  19. Harlfinger O, Knees G (1999) Klimahandbuch der oesterreichischen bodenschaetzung. Mitteilung der Oesterreichischen Bodenkundlichen Gesellschaft, Heft 58, p 196Google Scholar
  20. Hayes M, Trnka M, Svoboda M, Hlavinka P, Balek J, Dubrovský M, Wilhite D, Pokorný E, Bartošová L, Eitzinger J (2007) Understanding regional climate change consequences through the changes in soil moisture regimes. In: 25th annual meeting of American geosciences union, 10–14th December 2007, San FranciscoGoogle Scholar
  21. Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Možný M, Žalud Z (2009) Drought effects on the seasonal yield variability of key crops in the Czech Republic. Agric For Meteorol 149:431–442CrossRefGoogle Scholar
  22. Holden NM, Brereton AJ (2004) Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agric For Meteorol 122:175–191CrossRefGoogle Scholar
  23. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. In: Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  24. Hulme M, Wigley TML, Barrow EM, Raper SCB, Centella A, Smith S, Chipanshi AC (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN version 2.4 workbook. Climatic Research Unit, NorwichGoogle Scholar
  25. Kalvová J, Kašpárek L, Janouš D, Žalud Z, Kazmarová H (eds) (2002) Climate change induced impacts on water regime, agriculture, forestry and human health in the Czech Republic (in Czech). National Climatic Program of the Czech Republic, Prague, p 151Google Scholar
  26. Kořistka K (1860) Die Markgrafachaft Mahren un das Her-zogthum Schlesien, Wien-Olmutz (in the Moravian Archive Brno)Google Scholar
  27. Kruijt B, Witte J-PM, Jacobs CMJ, Kroon T (2008) Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J Hydrol 349:257–267CrossRefGoogle Scholar
  28. Kurpelová M, Coufal L, Čulík J (1975) Agroklimatické podmienky ČSSR (Agroclimatological conditions of the Czechoslovakia – In Slovak with English Summary). Hydrometeorological Institute, Bratislava, p 267Google Scholar
  29. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin, p 513Google Scholar
  30. Leenhardt D, Lemaire Ph (2002) Estimating the spatial and temporal distribution of sowing dates for regional water management. Agric Water Manag 55:37–52CrossRefGoogle Scholar
  31. Linderholm HW, Walther A, Chen DL (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim Change 87:405–419CrossRefGoogle Scholar
  32. Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. doi: 10.1088/1748-9326/2/1/014002 CrossRefGoogle Scholar
  33. Maton L, Bergez JE, Leenhardt D (2007) Modelling the days which are agronomically suitable for sowing maize. Eur J Agron 27:123–129CrossRefGoogle Scholar
  34. Mellander P, Löfvenius MO, Laudon H (2007) Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim Change 85:179–193CrossRefGoogle Scholar
  35. Mitchell TD, Hulme M (2002) Length of growing season. Weather 57:196–198Google Scholar
  36. Murer E, Wagenhofer J, Aigner F, Pfeffer M (2004) Die nutzbare Feldkapazität der mineralischen Böden der landwirtschaftlichen Nutzfläche Österreichs. In: Schriftenreihe BAW, vol 20, pp 72–78Google Scholar
  37. Němec J (1996) Aktualizace úřední ceny zemědělské půdy u vybraného souboru BPEJ (Update of the official price level of farm land for selected land-environmental units). Report by the Research Institute of Agriculture Economics, Prague, p 98Google Scholar
  38. Němec J (2001) Bonitace a oceňování zemědělské půdy České republiky (Assessment and evaluation of farm land in the Czech Republic-In Czech with English summary) Research Institute of Agriculture Economics, p 260Google Scholar
  39. Olesen J, Bindi M (2002) Consequences of climate change for European agriculture productivity, landuse and policy. Eur J Agron 16:239–262CrossRefGoogle Scholar
  40. Olesen J, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez MI, Morales P, Palutikov J, Quemada M, Ruiz-Ramos M, Rubæk G, Sau F, Smith B, Sykes M (2007) Uncertainties in projected impacts of climate change on European agriculture and ecosystems based on scenarios from regional climate models. Clim Change 81:123–143CrossRefGoogle Scholar
  41. Olesen JE, Trnka M, Kersebaum KC, Skejvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2010) Climate change impacts on European crop production and adaptation options as foreseen by agronomy experts. Eur J Agron. doi: 10.1016/j.eja.2010.11.003 Google Scholar
  42. Orlandini S, Nejedlík P, Eitzinger J, Alexandrov V, Toulios L, Calanca P, Trnka M, Olesen J (2008) Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Ann N Y Acad Sci 1146:338–353CrossRefGoogle Scholar
  43. Perarnaud V, Seguin B, Malezieux E, Deque M, Loustau D (2008) Agrometeorological research and applications needed to prepare agriculture and forestry to 21st century chmate change. Clim Change 70:319–340CrossRefGoogle Scholar
  44. Petr J (1991) Weather and yield. Developments in crop science 20. Elsevier, Amsterdam and New York, pp 288. ISBN 0-444-98803-3Google Scholar
  45. Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biochem Cycles 21:GB3018. doi: 10.1029/2006GB002888 Google Scholar
  46. Reidsma P (2007) Adaptation to climate change: European agriculture. PhD Thesis Wageningen University, Wageningen, The Netherlands, p 204Google Scholar
  47. Rijks D (1994) Agroclimatic characterization. In: Griffiths JE (ed) Handbook of agricultural meteorology. Oxford Univ. Press, Oxford, pp 231–244Google Scholar
  48. Rounsevell MDA (1993) A review of soil workability models and their limitations in temperate regions. Soil Use Manage 9:15–21CrossRefGoogle Scholar
  49. Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologicalbalance, canopy gas exchange and primary production processes. Ecol Model 42:125–154CrossRefGoogle Scholar
  50. Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Report No 47, Max Planck Institute für Meteorologie, HamburgGoogle Scholar
  51. Santibáňez F (1994) Crop requirements—temperate crops. In: Griffiths JE (ed) Handbook of agricultural meteorology. Oxford Univ. Press, Oxford, pp 174–188Google Scholar
  52. Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010-2100 für die SRES-Szenarios B1, A1B und A2. Publ. d. UBA, Dessau, p 149Google Scholar
  53. Štěpánek P (2006) AnClim—software for time series analysis (for Windows). Dept. of Geography, Fac. of Natural Sciences, Masaryk University, Brno. 1.47 MB.
  54. Štěpánek P (2007) ProClimDB—software for processing climatological datasets. CHMI, regional office Brno.
  55. Thaler S, Eitzinger J, Dubrovský M, Trnka M (2008) Climate change impacts on selected crops in Marchfeld, Eastern Austria, In: 28th conference on agricultural and forest meteorology, 28 April–2 May, Orlando, USA.
  56. Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104:255–271CrossRefGoogle Scholar
  57. Tomášek M (2000) Půdy České republiky (Soils of the Czech Republic). Czech Geological Service, Prague, p 109Google Scholar
  58. Trnka M, Dubrovsky M, Zalud Z (2004) Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Clim Change 64:227–255CrossRefGoogle Scholar
  59. Trnka M, Muška F, Semerádová D, Dubrovský M, Kocmánková E, Žalud Z (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84CrossRefGoogle Scholar
  60. Trnka M, Eitzinger J, Dubrovský M et al (2010a) Is the rainfed crop production in Central Europe at risk? - Using a regional climate model to produce high resolution agroclimatic information for decision makers. J Agric Sci 148:639–656CrossRefGoogle Scholar
  61. Trnka M, Kocmánková E, Balek J et al (2010b) Simple snow cover model for agrometeorological applications. Agric For Meteorol 150:1115–1127CrossRefGoogle Scholar
  62. Trnka M, Olesen JE, Kersebaum KC, Skjelvag AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Orlandini S, Dubrovsky M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Rotter R, Gobin A, Vucetic V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Alexandrov V, Kozyra J, Schaap B, Zalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Change Biol. doi: 10.1111/j.1365-2486.2011.02396.x
  63. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834CrossRefGoogle Scholar
  64. White DH, Lubulwa G, Menz K, Zuo H, Wint W, Slingenbergh J (2001) Agroclimatic classification systems for estimating the global distribution of livestock numbers and commodities. Environ Int 27:181–187CrossRefGoogle Scholar

Further Reading

  1. For free experimental copy of AgriClim program please write to:

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Miroslav Trnka
    • 1
    Email author
  • Josef Eitzinger
    • 2
  • Daniela Semerádová
    • 1
  • Petr Hlavinka
    • 1
  • Jan Balek
    • 1
  • Martin Dubrovský
    • 1
    • 3
  • Gerhard Kubu
    • 2
  • Petr Štěpánek
    • 4
  • Sabina Thaler
    • 2
  • Martin Možný
    • 4
  • Zdeněk Žalud
    • 1
  1. 1.Institute of Agrosystems and BioclimatologyMendel University in BrnoBrnoCzech Republic
  2. 2.Institute for MeteorologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Institute of Atmospheric PhysicsCzech Academy of SciencesPragueCzech Republic
  4. 4.Czech Hydrometeorological InstitutePragueCzech Republic

Personalised recommendations