Climatic Change

, Volume 105, Issue 3–4, pp 365–381 | Cite as

Bright water: hydrosols, water conservation and climate change

Article

Abstract

Because air–water and water–air interfaces are equally refractive, cloud droplets and microbubbles dispersed in bodies of water reflect sunlight in much the same way. The lifetime of sunlight-reflecting microbubbles, and hence the scale on which they may be applied, depends on Stokes Law and the influence of ambient or added surfactants. Small bubbles backscatter light more efficiently than large ones, opening the possibility of using highly dilute micron-radius hydrosols to substantially brighten surface waters. Such microbubbles can noticeably increase water surface reflectivity, even at volume fractions of parts per million and such loadings can be created at an energy cost as low as J m − 2 to initiate and mW m − 2 to sustain. Increasing water albedo in this way can reduce solar energy absorption by as much as 100 W m − 2, potentially reducing equilibrium temperatures of standing water bodies by several Kelvins. While aerosols injected into the stratosphere tend to alter climate globally, hydrosols can be used to modulate surface albedo, locally and reversibly, without risk of degrading the ozone layer or altering the color of the sky. The low energy cost of microbubbles suggests a new approach to solar radiation management in water conservation and geoengineering: Don’t dim the Sun; Brighten the water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkarian M, Subramaniam AB, Kim S-H, Larsen RJ, Yang S-M, Stone H (2007) Dissolution arrest and stability of particle-covered bubbles. Phys Rev Lett 99:188301CrossRefGoogle Scholar
  2. Akbari S, Menon J, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286. doi:10.1007/s10584-008-9515-9 CrossRefGoogle Scholar
  3. Brennen CE (2005) Cavitation and bubble dynamics. Oxford U Press, New YorkGoogle Scholar
  4. Buhaug Ø, Corbett JJ, Endresen Ø, Eyring V, Faber J, Hanayama S, Lee DS et al (2009) Second IMO GHG study, April 2009. International Maritime Organization (IMO), LondonGoogle Scholar
  5. Crutzen P (2006) Albedo enhancement by stratospheric sulfur injections. Clim Change 77:211–219CrossRefGoogle Scholar
  6. D’Arrigo JS, Saiz-Jimemez C, Reimer NS (1984) Geochemical properties and biochemical composition of the surfactant mixture surrounding natural microbubbles in aqueous media. J Colloid Interface Sci 100:96–105CrossRefGoogle Scholar
  7. Dickey TD, Falkowski P (2003) Solar energy and its biological–physical interactions in the sea. In: Robinson AR et al (eds) The sea, vol 12. Wiley, New York, pp 401–404Google Scholar
  8. Dressaire E, Bee R, Bell C, Lips A, Stone HA (2008) Interfacial polygonal nanopatterning of stable microbubbles. Science 321:1198–1201CrossRefGoogle Scholar
  9. Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19(5):589–606. doi:10.1111/j.1466-8238.2010.00540 Google Scholar
  10. Gargett AE (1991) Physical processes and the maintenance of nutrient rich euphotic zones. Limnol Oceanogr 36:1527–1545CrossRefGoogle Scholar
  11. Gnanadesikan A, Emanuel K, Vecchi GA, Anderson WG, Hallberg R (2010) How ocean color can steer Pacific tropical cyclones. Geophys Res Lett 37:L18802. doi:10.1029/2010GL044514 CrossRefGoogle Scholar
  12. Gokbulak F, Ozban S (2006) Water loss through evaporation from water surfaces of lakes and reservoirs. E-Water. Available online at http://www.ewaonline.de/journal/2006_07.pdf
  13. Gordon HR (1985) Ship perturbation of irradiance measurements at sea: 1: Monte Carlo simulations. Appl Opt 24:4172–4182CrossRefGoogle Scholar
  14. Graham-Rove D (2008) Future transport. Nature 454:924–925CrossRefGoogle Scholar
  15. Greene CH, Baker D, Miller D (2010) A very inconvenient truth. Oceanography 23:214–221Google Scholar
  16. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1341–1346CrossRefGoogle Scholar
  17. Hossein J, Syed J, Inoguchi Y, Ma X (2010) Surfactants. Available online at http://www.sriconsulting.com/SCUP/Public/Reports/SURFA000s
  18. Hwang PA, Xu D, Wu J (1989) Breaking of wind-generated waves: measurements and characteristics. J Fluid Mech 202:177–200CrossRefGoogle Scholar
  19. Jin Z, Charlock T, Rutledge K (2002) Analysis of broadband solar radiation and albedo over the ocean surface at COVE. J Atm Oceanic Tech 19:1585–1601CrossRefGoogle Scholar
  20. Jin Z, Charlock TP, Rutledge K, Stamnes K, Wang Y (2006) Analytical solution of radiative transfer in the coupled atmosphere system with a rough surface. Appl Opt 45:7443–7455CrossRefGoogle Scholar
  21. Johnson BD, Cooke RC (1980) Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater. Limnol Oceanogr 25:653–661CrossRefGoogle Scholar
  22. Johnson BD, Cooke RC (1981) Generation of stabilized microbubbles in seawater. Science 213:209–211CrossRefGoogle Scholar
  23. Johnson BD, Wangersky PJJ (1987) Microbubbles: Stabilization by monolayers of adsorbed particles. J Geophys Res 92(C13):14641–14647CrossRefGoogle Scholar
  24. Kato H (1999) Skin friction reduction by microbubbles. Tokyo University Department of Engineering monograph, Kawagoe, pp 2–18Google Scholar
  25. Katz ME, Wright JD, Miller BS, Cramer BS, Fennel K, Falkowski PG (2004) Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Ann Rev Ecol Evol Syst 35:523–556CrossRefGoogle Scholar
  26. Keith DW, Ha-Duong M, Stolaroff JK (2005) Climate strategy with CO2 capture from the air. Clim Change 74:17–45CrossRefGoogle Scholar
  27. Latham J (1990) Control of global warming? Nature 347:339–340CrossRefGoogle Scholar
  28. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3:52–58. doi:10.1006/Asle.2002.0048 CrossRefGoogle Scholar
  29. Latham J, Rasch P, Chen CC, Kettles L, Gadian A, Gettleman A, Morrison H, Bower K, Choularton T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil Trans R Soc A 366:3969–3987CrossRefGoogle Scholar
  30. Le Quéré C, Rödenbeck C, Buitenhuis C, Conway T, Langenfelds R, Gomez A, Labuschagne C, et al (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738CrossRefGoogle Scholar
  31. Lozano MM, Longo ML (2009) Microbubbles coated with disaturated lipids and DSPPEG2000: phase behavior, collapse transitions, and permeability. Langmuir 25:3705–3712CrossRefGoogle Scholar
  32. Lozano MM, Talu E, Longo ML (2007) Dissolution of microbubbles generated in seawater obtained offshore: behavior and surface tension measurement. J Geophys Res 112(C):12001CrossRefGoogle Scholar
  33. Lovelock J (2009) A geophysiologist’s thoughts on geoengineering. Phil Trans R Soc A 366:3883–3890. doi:10.1098/rsta.2008.0135 CrossRefGoogle Scholar
  34. MacCracken M (2009) On the possible use of geoengineering to moderate specific climate change impacts. Environ Res Lett 4:1–14CrossRefGoogle Scholar
  35. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P (2009) Impact of changes in diffuse radiation on the global carbon land sink. Nature 458:1014–1017CrossRefGoogle Scholar
  36. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574CrossRefGoogle Scholar
  37. Monahan EC, Mac Niocaill G (eds) (1986) Oceanic whitecaps and their role in air-sea exchange processes. P234-5 ISBN 902772251X Springer Verlag, Heidelberg, pp 294Google Scholar
  38. Moore KD, Voss KV, Gordon HR (2000) Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. J Geophys Res 105(C3):6493–6499CrossRefGoogle Scholar
  39. Morton O (2009) Climate crunch: great white hope. Nature 458:1097–1100. doi:10.1038/4581097a CrossRefGoogle Scholar
  40. Neiberger M (1957) Weather modification and smog. Science 126:637–645CrossRefGoogle Scholar
  41. Ohnari H, Hiro J (2006) Micro and nano bubble generation in compressed two phase water jets. Japan J Multiphase Flow 20(Pt.1):57–61Google Scholar
  42. Oleson K, Bonan GB, Feddema J (2010) Effects of white roofs on urban temperature in a global climate model. Geophys Res Lett 37:L03701. doi:10.1029/2009GL042194 CrossRefGoogle Scholar
  43. Onhari H, Takahashi M, Himuro S (2002) Microbubble generation in sheared high Reynolds number flows. Japan J Multiphase Flow 16:130–137Google Scholar
  44. Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972CrossRefGoogle Scholar
  45. Piskozub J, Stramski D, Terrill E, Melville WK (2009) Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results. Opt Express 17:11747–11752CrossRefGoogle Scholar
  46. Pu G, Borden MA, Longo ML (2006) Collapse and shedding transitions in binary lipid monolayers coating microbubbles. Langmuir 22:2993–2999CrossRefGoogle Scholar
  47. Pyne S (1997) Vestal fire. University of Washington Press, Seattle. 657 ppGoogle Scholar
  48. Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54(6):R27CrossRefGoogle Scholar
  49. Ramanathan V, Cess R, Harrison E, Minnis P, Barkstrom B, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science 243:57–69CrossRefGoogle Scholar
  50. Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179 CrossRefGoogle Scholar
  51. Read KA, Mahajan A, Carpenter L, Evans MJ, Faria H, Saiz-Lopez A, Pilling MJ, Plane JMC (2009) Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232–1235CrossRefGoogle Scholar
  52. Robock A, Marquardt AB, Kravitz B, Stenchikov G (2009) Benefits, risks, and costs of stratospheric geoengineering. Geophys Res Lett 36(L):19703CrossRefGoogle Scholar
  53. Sadatomi M, Kawahara A, Matsuyama F, Kimura T (2007) An advanced microbubble generator and its application to a newly developed bubble-jet type air lift. Multiph Sci Tech 19:329–342Google Scholar
  54. Salter S, Sortino G, Latham J (2008) Sea-going hardware for the cloud albedo method of reversing global warming. Phil Trans R Soc A 366:3989–4006CrossRefGoogle Scholar
  55. Schneider SH (1996) Geoengineering: could-or should-we do it? Clim Change 33:291–302CrossRefGoogle Scholar
  56. Seitz F (1958) On the theory of the bubble chamber. Phys Fluids 1:2–10CrossRefGoogle Scholar
  57. Seitz R (1986) Siberian fire as ‘nuclear winter’ guide. Nature 32:116–117CrossRefGoogle Scholar
  58. Seitz R (1991) Black skies or pale fire? Nature 350:182–183CrossRefGoogle Scholar
  59. Seitz R (2009) The next top model. Foreign Aff 88(4):68Google Scholar
  60. Shepherd J (ed) (2009) Geoengineering the climate: science, governance and uncertainty. London Science Policy Centre, The Royal Society LondonGoogle Scholar
  61. Solomon JS, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) (2007) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  62. Stramski D, Tegowski J (2001) Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field. J Geophys Res 106(C12 31):345–360Google Scholar
  63. Teller E, Wood L, Hyde R (1996) Global warming and ice ages: I. Prospects for physics-based modulation of global change. UCRL-JC-128715, Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  64. Terrill E, Melville WK, Stramski D (2001) Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J Geophys Res 106(C8):16,815–16,823CrossRefGoogle Scholar
  65. Thorpe SA (1982) The physics of breaking waves. Phil Trans R Soc A 304:155–210CrossRefGoogle Scholar
  66. Thorpe SA (1992) Bubble clouds and the dynamics of the upper ocean. Q J R Meteorol Soc 118:1–22CrossRefGoogle Scholar
  67. Tilmes S, Müller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204CrossRefGoogle Scholar
  68. Toole DA, Siegel DA, Menzies DW, Neumann MJ, Smith RC (2000) Remote-sensing reflectance determinations in the coastal ocean environment. Appl Opt 39:456–469CrossRefGoogle Scholar
  69. University Consortium on Atmospheric Research (2008) Description of the NCAR Community Atmosphere Model (CAM3). Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/
  70. Van Vuuren DP, Eickhout B, Lucas PL, Meinshausen M, Plattner G-H, Joos F, Strassmann K, Smith S, Wigley T, et al (2009) Temperature increase of 21st century mitigation scenarios. PNAS 106:9–16CrossRefGoogle Scholar
  71. Victor D, Morgan MG, Apt J, Steinbruner J, Ricke K (2009) The geoengineering option: a last resort against global warming? Foreign Aff 88(2):64–76Google Scholar
  72. Weber TC, Lyons AC, Bradley DL (2005) An estimate of the gas transfer rate from oceanic bubbles derived from multibeam sonar observations of a ship wake. J Geophys Res 110:C04005. doi:10.1029/2004JC002666 CrossRefGoogle Scholar
  73. Whitlock CH, Bartlett DS, Gurganus EA (1982) Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophys Res Lett 9:719–722CrossRefGoogle Scholar
  74. Willis J (1971) Some high values for the albedo of the sea. J Appl Meteorol 10:1296–1392CrossRefGoogle Scholar
  75. Wuebbles DJ, Naik V, Foley J (2001) Influence of geoengineered climate on the biosphere. Eos 82:47Google Scholar
  76. Wurl O, Holmes M (2008) The gelatinous nature of the sea-surface microlayer. Mar Chem 110:89–97CrossRefGoogle Scholar
  77. Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37:6525–6536CrossRefGoogle Scholar
  78. Zhang X, Lewis M, Bissett WP, Johnson B, Kohler D (2004) Optical influence of ship wakes. Appl Opt 43:3122–3132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations