Climatic Change

, Volume 103, Issue 3–4, pp 635–642

What do near-term observations tell us about long-term developments in greenhouse gas emissions?

A Letter
  • Detlef P. van Vuuren
  • Jae Edmonds
  • Steven J. Smith
  • Kate V. Calvin
  • Joseph Karas
  • Mikiko Kainuma
  • Nebojsa Nakicenovic
  • Keywan Riahi
  • Bas J. van Ruijven
  • Rob Swart
  • Allison Thomson
Letter

Abstract

Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems. The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years). Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales. In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term. We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments. Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends. The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10584_2010_9940_MOESM1_ESM.doc (42 kb)
(DOC 41.5 KB)

References

  1. Anderson K, Bows A (2008) Reframing the climate change challenge in light of post-2000 emission trends. Philos Trans Royal Soc A, Math Phys Eng Sci 366:3863–3882CrossRefGoogle Scholar
  2. Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USAGoogle Scholar
  3. Craig PP, Gadgil A, Koomey JG (2002) What can history teach us? A retrospective examination of long-term energy forecasts for the United States. Annu Rev Energy Environ 27:83–118CrossRefGoogle Scholar
  4. Edmonds J, Reilly J (1983) A long-term global energy-economic model of carbon dioxide release from fossil fuel use. Energy Econ 5:74–88CrossRefGoogle Scholar
  5. Edmonds J, Reilly J (1985) Global energy—assessing the future. Oxford University Press, New YorkGoogle Scholar
  6. Fisher B, Nakicenovic N, Alfsen K, Corfee Morlot J, de la Chesnaye F, Hourcade J-C, Jiang K, Kainuma M, La Rovere E, Matysek A, Rana A, Riahi K, Richels R, Rose S, Van Vuuren D, Warren R, Ambrosi P, Birol F, Bouille D, Clapp C, Eickhout B, Hanaoka T, Mastrandrea MD, Matsuoko Y, O’Neill B, Pitcher H, Rao S, Toth F (2007) Issues related to mitigation in the long-term context. In: Metz B, Davidson O, Bosch P, Dave R, Meyer L (eds) Climate change 2007. Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 169–250Google Scholar
  7. Godet M, Roubelat F (1996) Creating the future: the use and mis-use of scenarios. Long Range Plan 29:164–171CrossRefGoogle Scholar
  8. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster PN, Friedlingstein P, Gurney KR, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  9. Manning MR, Edmonds J, Emori S, Grubler A, Hibbard KA, Joos F, Kainuma M, Keeling RF, Kram T, Manning AC, Meinshausen M, Moss R, Nakicenovic N, Riahi K, Rose SK, Smith S, Swart R, Van Vuuren DP (2010) Misrepresentation of the IPCC CO2 emission scenarios. Nat Geosci 3:376–277CrossRefGoogle Scholar
  10. Mayor K, Tol RSW (2010) Scenarios of carbon dioxide emissions from aviation. Glob Environ Change 20:65–73CrossRefGoogle Scholar
  11. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature. doi:10.1038/nature08823 Google Scholar
  12. Nakicenovic N, Alcamo J, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen SNV, Dadi Z (2000) Special report on emissions scenarios: a special report of working Group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. O’Neill B, Riahi K, Keppo I (2010) Mitigation implications of midcentury targets that preserve long-term climate policy options. Proc Natl Acad Sci. doi:10.1073/pnas.0903797106 Google Scholar
  14. Olivier JGJ, Peters JAHW (2010) No growth in total global CO2 emissions in 2009. Netherlands Environmental Assessment Agency, BilthovenGoogle Scholar
  15. Parson E, Burkett V, Fisher-Vanden K, Keith DW, Mearns LO, Pitcher H, Rosenzweig C, Webster M (2007) Global change scenarios: their development and use. Sub-report 2.1B of synthesis and assessment product 2.1 U.S. Climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological & Environmental Research, Washington, DCGoogle Scholar
  16. Pielke R, Wigley T, Green C (2008) Dangerous assumptions. Nature 452:531–532CrossRefGoogle Scholar
  17. Raupach MR, Marland G, Ciais P, Le Quére C, Canadell CG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. PNAS 104:10288–10293CrossRefGoogle Scholar
  18. Richardson K, Steffen W, Schellnhuber HJ, Alcamo J, Barker T, Kammen DM, Leemans R, Liverman D, Munasinghe M, Osman-Elasha B, Stern N, Wæver O (2009) Climate change. Copenhagen 2009, 10–12 March. Synthesis report. University of Copenhagen, CopenhagenGoogle Scholar
  19. Richels RG, Manne AS, Wigley TML (2004) Moving beyond concentrations: the challange of limiting temperature change. AEI-Brooking Joint Center for regulatory studies, Washington D.CGoogle Scholar
  20. Richels RG, Tol RSJ, Yohe GW (2008) Future scenarios for emissions need continual adjustment. Nature 453:155CrossRefGoogle Scholar
  21. Sheehan P (2008) The new global growth path: implications for climate change analysis and policy. Clim ChangeGoogle Scholar
  22. Shell International (2001) Energy needs, choices, and possibilities: scenarios to 2050. Global Business EnvironmentGoogle Scholar
  23. Smil V (2000) Perils of long-range energy forecasting: reflections on looking far ahead. Technol Forecast Soc Change 65:251–264CrossRefGoogle Scholar
  24. van Ruijven B, Urban F, Benders RMJ, Moll HC, van der Sluijs JP, de Vries B, Van Vuuren DP (2008) Modeling energy and development: an evaluation of models and concepts. World Dev 36:2801–2821CrossRefGoogle Scholar
  25. van Ruijven BJ, van der Sluijs J, Van Vuuren D, Janssen P, Heuberger P, de Vries B (2010) Uncertainty from model calibration: applying a new method to transport energy demand modelling. Environ Model Assess 15:175–188CrossRefGoogle Scholar
  26. van Vuuren DP, O’Neill BC (2006) The consistency of IPCC’s SRES scenarios to recent literature and recent projections. Clim Change 75:9–46CrossRefGoogle Scholar
  27. van Vuuren DP, Riahi K (2008) Do recent emission trends imply higher emissions forever? Clim Change 91:237–248CrossRefGoogle Scholar
  28. van Vuuren DP, de Vries B, Beusen A, Heuberger PSC (2008) Conditional probabilistic estimates of 21st century greenhouse gas emissions based on the storylines of the IPCC-SRES scenarios. Glob Environ Change 18:635–654CrossRefGoogle Scholar
  29. van Vuuren DP, Lowe J, Stehfest E, Gohar L, Hof AF, Hope C, Warren R, Meinshausen M, Plattner GK (2010) How well do integrated assessment models simulate climate change? Clim Change. 10.1007/s10584-009-9764-2 Google Scholar
  30. Wilson C (2009) Meta-analysis of unit and industry level scaling dynamics in energy technologies and climate change mitigation scenarios. International Institute of Applied System Analysis. IIASA Interim Report IR-09-029. Laxenbourg, AustriaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Detlef P. van Vuuren
    • 1
  • Jae Edmonds
    • 2
  • Steven J. Smith
    • 2
  • Kate V. Calvin
    • 2
  • Joseph Karas
    • 2
  • Mikiko Kainuma
    • 3
  • Nebojsa Nakicenovic
    • 4
    • 5
  • Keywan Riahi
    • 4
  • Bas J. van Ruijven
    • 1
  • Rob Swart
    • 6
  • Allison Thomson
    • 2
  1. 1.Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.Pacific Northwest National LaboratoryJoint Global Change Research InstituteCollege ParkUSA
  3. 3.National Institute for Environmental Studies (NIES)TsukubaJapan
  4. 4.International Institute for Applied System AnalysisLaxenburgAustria
  5. 5.Vienna University of TechnologyViennaAustria
  6. 6.Wageningen University and Research CentreEarth System Science and Climate Change GroupWageningenThe Netherlands

Personalised recommendations