Advertisement

Climatic Change

, Volume 103, Issue 3–4, pp 619–625 | Cite as

The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments

A letter
  • Robert E. Kopp
  • Jerry X. Mitrovica
  • Stephen M. Griffies
  • Jianjun Yin
  • Carling C. Hay
  • Ronald J. Stouffer
Letter

Abstract

Local sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic “water-hosing” experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, we find that geographic SE patterns should be challenging but possible to detect above dynamic variability. At higher melt rates, we find that DSL trends are strongest in the western North Atlantic, while SE effects will dominate in most of the ocean when melt exceeds ~20 cm equivalent sea level.

Keywords

Atlantic Meridional Overturn Circulation Mass Redistribution Freshwater Hose Static Equilibrium Effect Meltwater Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10584_2010_9935_MOESM1_ESM.pdf (7.3 mb)
(PDF 7.33 MB)

References

  1. Bingham RJ, Hughes CW (2009) Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi: 10.1029/2008GL036215 CrossRefGoogle Scholar
  2. Delworth TL et al (2006) GFDL’s CM2 global coupled climate models—part 1: formulation and simulation characteristics. J Climate 19:643–674CrossRefGoogle Scholar
  3. Douglas BC (1991) Global sea level rise. J Geophys Res 96:6981–6992. doi: 10.1029/91JC00064 CrossRefGoogle Scholar
  4. Gregory J et al (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim Dyn 18:225–240CrossRefGoogle Scholar
  5. Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79CrossRefGoogle Scholar
  6. Hu A et al (2009) Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys Res Lett 36:L10707. doi: 10.1029/2009GL037998 CrossRefGoogle Scholar
  7. Katsman C et al (2008) Climate scenarios of sea level rise for the northeast atlantic ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change 91:351–374CrossRefGoogle Scholar
  8. Kendall R, Mitrovica J, Milne G (2005) On post-glacial sea level—II. Numerical formulation and comparative results on spherically symmetric models. Geophys J Int 161:679–706CrossRefGoogle Scholar
  9. Mitrovica JX et al (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  10. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1344CrossRefGoogle Scholar
  11. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315:1529–1532CrossRefGoogle Scholar
  12. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06022. doi: 10.1029/2006JC004079 CrossRefGoogle Scholar
  13. Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Climate 19:1365–1387CrossRefGoogle Scholar
  14. Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Robert E. Kopp
    • 1
    • 2
  • Jerry X. Mitrovica
    • 3
  • Stephen M. Griffies
    • 4
  • Jianjun Yin
    • 5
  • Carling C. Hay
    • 6
  • Ronald J. Stouffer
    • 4
  1. 1.Department of Geosciences and Woodrow Wilson School of Public and International AffairsPrinceton UniversityPrincetonUSA
  2. 2.AAAS Science and Technology Policy FellowAmerican Association for the Advancement of ScienceWashingtonUSA
  3. 3.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  4. 4.Geophysical Fluid Dynamics LaboratoryNational Oceanic and Atmospheric AdministrationPrincetonUSA
  5. 5.Center for Ocean-Atmospheric Prediction StudiesFlorida State UniversityTallahasseeUSA
  6. 6.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations