Advertisement

Climatic Change

, Volume 106, Issue 2, pp 179–202 | Cite as

Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe)

  • Philip J. WardEmail author
  • Hans Renssen
  • Jeroen C. J. H. Aerts
  • Peter H. Verburg
Open Access
Article

Abstract

We used a calibrated coupled climate–hydrological model to simulate Meuse discharge over the late Holocene (4000–3000 BP and 1000–2000 AD). We then used this model to simulate discharge in the twenty-first century under SRES emission scenarios A2 and B1, with and without future land use change. Mean discharge and medium-sized high-flow (e.g. Q99) frequency are higher in 1000–2000 AD than in 4000–3000 BP; almost all of this increase can be attributed to the conversion of forest to agriculture. In the twentieth century, mean discharge and the frequency of medium-sized high-flow events are higher than in the nineteenth century; this increase can be attributed to increased (winter half-year) precipitation. Between the twentieth and twenty-first centuries, anthropogenic climate change causes a further increase in discharge and medium-sized high-flow frequency; this increase is of a similar order of magnitude to the changes over the last 4,000 years. The magnitude of extreme flood events (return period 1,250-years) is higher in the twenty-first century than in any preceding period of the time-slices studied. In contrast to the long-term influence of deforestation on mean discharge, changes in forest cover have had little effect on these extreme floods, even on the millennial timescale.

References

  1. Aerts JCJH, Bouwer LM (2002) STREAM Krishna. A hydrological model for the Krishna River in India. RIKZ/Coastal Zone Management Centre, The Hague. www.geo.vu.nl/users/ivmstream/public/aerts&bouwer2002a.pdf
  2. Aerts JCJH, Kriek M, Schepel M (1999) STREAM (Spatial tools for river basins and environment and analysis of management options): set up and requirements. Phys Chem Earth Part B Hydrol Oceans Atmos 24:591–595CrossRefGoogle Scholar
  3. Aerts JCJH, Renssen H, Ward PJ, De Moel H, Odada E, Bouwer LM, Goosse H (2006) Sensitivity of global river discharges under Holocene and future climate conditions. Geophys Res Lett 33:L19401. doi: 10.1029/2006GL027493 CrossRefGoogle Scholar
  4. Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27. doi: 10.1016/j.jhydrol.2003.1012.1015 CrossRefGoogle Scholar
  5. Arnell N, Liu C, Compagnucci R, Da Cunha L, Hanaki K, Howe C, Mailu G, Shiklomanov I, Stakhiv E (2001) Hydrology and water resources. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 193–233Google Scholar
  6. Ashagrie AG, De Laat PJM, De Wit MJM, Tu M, Uhlenbrook S (2006) Detecting the influence of land use changes on discharges and floods in the Meuse River Basin—the predictive power of a ninety-year rainfall-runoff relation? Hydrol Earth Syst Sci 10:691–701CrossRefGoogle Scholar
  7. Berendsen HJA, Stouthamer E (2001) Palaeogeographic development of the Rhine–Meuse delta, the Netherlands. Koninklijke van Gorcum, AssenGoogle Scholar
  8. Berger HEJ (1992) Flow forecasting for the River Meuse. Ph D thesis, Technische Universiteit DelftGoogle Scholar
  9. Bohncke SJP, Vandenberghe J, Coope R, Reiling R (1987) Geomorphology and palaeoecology of the Mark valley (southern Netherlands): palaeoecology, palaeohydrology and climate during the Weichselian Late Glacial. Boreas 16:69–85. doi: 10.1111/j.1502-3885.1987.tb00756.x CrossRefGoogle Scholar
  10. Bohncke SJP, Vandenberghe J (1991) Palaeohydrological development in the Southern Netherlands during the last 15000 years. In: Starkel L, Gregory KJ, Thornes JB (eds) Temperate palaeohydrology. Wiley, Chichester, pp 253–281Google Scholar
  11. Booij MJ (2002) Appropriate modelling of climate change impacts on river flooding. Ph D Thesis, University of Twente, the NetherlandsGoogle Scholar
  12. Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303:176–198. doi: 110.1016/j.jhydrol.2004.1007.1013 CrossRefGoogle Scholar
  13. Bouwer LM, Aerts JCJH, Van de Coterlet GM, Van de Giesen N, Gieske A, Mannaerts C (2004) Evaluating downscaling methods for preparing Global Circulation Model (GCM) data for hydrological impact modelling. In: Aerts JCJH, Droogers P (eds) Climate change in contrasting river basins. adaptation strategies for water, food and environment. CABI, Wallingford, pp 25–47CrossRefGoogle Scholar
  14. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16:1139. doi: 1110.1029/2001GB001662,002002 CrossRefGoogle Scholar
  15. Brown AE, Zhang L, McMahon TA, Western AW, Vertessy R (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61. doi: 10.1016/j.jhydrol.2004.1012.1010 CrossRefGoogle Scholar
  16. Bultot F, Coppens A, Dupriez GL, Gellens D, Meulenberghs F (1988) Repercussions of a CO2 doubling on the water cycle and on the water balance—a case study for Belgium. J Hydrol 99:319–347CrossRefGoogle Scholar
  17. Bultot F, Dupriez GL, Gellens G (1990) Simulation of land use changes and impacts on the water balance—case study for Belgium. J Hydrol 114:327–348CrossRefGoogle Scholar
  18. Bunnik FPM (1995) Pollenanalytische Ergebnisse zur Vegetations- und Land-wirtschaftsgeschichte der Jülicher Lößbörde von der Bronzezeit bis in die frühe Neuzeit. Bonn Jahrb 195:313–349Google Scholar
  19. Busch G (2006) Future European agricultural landscapes—what can we learn from existing quantitative land use scenario studies? Agric Ecosyst Environ 114:121–140. doi: 10.1016/j.agee.2005.11.007 CrossRefGoogle Scholar
  20. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586. doi: 10.1007/s00382-001-0200-1 CrossRefGoogle Scholar
  21. Cosandey C, Andréassian V, Martin C, Didon-Lescot JF, Lavabre J, Folton N, Mathys N, Richard D (2005) The hydrological impact of the Mediterranean forest: a review of French research. J Hydrol 301:235–249CrossRefGoogle Scholar
  22. De Moor JJW, Kasse C, Van Balen RT, Vandenberghe J, Wallinga J (2008) Human and climate impact on catchment development during the Holocene–Geul River, the Netherlands. Geomorphology 98:316–339. doi: 10.1016/j.geomorph.2006.12.033 CrossRefGoogle Scholar
  23. De Wit M, Warmerdam P, Torfs P, Uijlenhout R, Roulin E, Cheymol A, Van Deursen W, Van Walsum P, Ververs M, Kwadijk J, Buiteveld H (2001) Effect of climate change on the hydrology of the river Meuse. Dutch national research programme on global air pollution and climate change report number 410.200.090. RIVM, BilthovenGoogle Scholar
  24. De Wit MJM, Peeters H, Gastaud PH, Dewil P, Maeghe K, Baumgart J (2007a) Floods in the Meuse basin: event descriptions and an international view on ongoing measures. Int J River Basin Manage 5:279–292CrossRefGoogle Scholar
  25. De Wit MJM, Van den Hurk B, Warmerdam PMM, Torfs PJJF, Roulin E, Van Deursen WPA (2007b) Impact of climate change on low-flows in the river Meuse. Clim Change 82:1573–1480. doi: 1510.1007/s10584-10006-19195-10582 CrossRefGoogle Scholar
  26. Diermanse FLM (2004)HR2006 herberekening werklijn Maas. Report Q4623. WL Delft Hydraulics, DelftGoogle Scholar
  27. EEA (2001) Sustainable water use in Europe. Part 3: extreme hydrological events: floods and droughts. Environmental issue report number 21. EEA, CopenhagenGoogle Scholar
  28. Gellens D (1991) Impact of a CO2-induced climatic change on river flow variability in three rivers in Belgium. Earth Surf Process Landf 16:619–625CrossRefGoogle Scholar
  29. Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210:242–258CrossRefGoogle Scholar
  30. Gentry AH, Parody JL (1980) Deforestation and increased flooding of the Upper Amazon. Science 210:1354–1356CrossRefGoogle Scholar
  31. Giorgi F, Coppola E (2007) European climate-change oscillation (ECO). Geophys Res Lett 34:L21703. doi: 21710.21029/22007GL031223 CrossRefGoogle Scholar
  32. Goosse H, Fichefet T (1999) Importance of ice–ocean interactions for the global ocean circulation: a model study. J Geophys Res Oceans 104:23337–23355CrossRefGoogle Scholar
  33. Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quat Sci Rev 24:1345–1360CrossRefGoogle Scholar
  34. Goosse H, Arzel O, Luterbacher J, Mann ME, Renssen H, Riedwyl N, Timmermann A, Xoplaki E, Wanner H (2006) The origin of the European “medieval warm period.” Climate of the Past 2:99–113. www.clim-past.net/2/99/2006/ CrossRefGoogle Scholar
  35. Gotjé W, Van Wayjen MCA, Van Geel B (1990) A palynological study of a Holocene deposit from Grand-Bongard (Hautes-Fagnes, Belgium). Geol Mijnb 69:227–241Google Scholar
  36. Goudie A (1992) Environmental change: contemporary problems in geography. Clarendon, OxfordGoogle Scholar
  37. Hofstede JLA, Berendsen HJA, Janssen CR (1989) Holocene palaeogeography and palaeoecology of the fluvial area near Maurik (Neder-Betuwe, the Netherlands). Geol Mijnb 68:409–419Google Scholar
  38. IPCC (2000) Special report on emission scenarios. Cambridge University Press, New YorkGoogle Scholar
  39. Jones JA (2000) Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour Res 36:2621–2642CrossRefGoogle Scholar
  40. Können GP (1999) De toekomst van het Nederlandse klimaat. KNMI, De BiltGoogle Scholar
  41. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of the working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210Google Scholar
  42. Kwadijk JCJ (1993) The impact of climate change on the discharge of the River Rhine. Ph D thesis, Universiteit UtrechtGoogle Scholar
  43. Kwadijk J, Rotmans J (1995) The impact of climate change on the River Rhine: a scenario study. Clim Change 30:397–425CrossRefGoogle Scholar
  44. Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332:487–496. doi: 10.1016/j.jhydrol.2006.08.006 CrossRefGoogle Scholar
  45. Leander R, Buishand TA, Van den Hurk BJJM, De Wit MJM (2008) Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J Hydrol 351:331–343. doi: 10.1016/j.jhydrol.2007.12.020 CrossRefGoogle Scholar
  46. Mahe G, Paturel J-E, Servat E, Conway D, Dezetter A (2005) The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J Hydrol 300:33–43CrossRefGoogle Scholar
  47. Middelkoop H, Van Asselt MBA, Van ’t Klooster SA, Van Deursen WPA, Kwadijk JCJ, Buiteveld H (2004) Perspectives on flood management in the Rhine and Meuse Rivers. River Res Appl 20:327–342CrossRefGoogle Scholar
  48. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  49. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  50. Renssen H, Goosse H, Fichefet T, Brovkin V, Driesschaert E, Wolk F (2005) Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere–sea–ice–ocean–vegetation model. Clim Dyn 24:23–43CrossRefGoogle Scholar
  51. Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G (2006) A coherent set of land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68. doi: 10.1016/j.agee.2005.11.027 CrossRefGoogle Scholar
  52. RWS Limburg/IWACO (2000) Internationale ecologische verkenning Maas (EVIM). Historisch ecologische oriëntatie op het stroomgebied (fase 2a). Rijkswaterstaat Directie Limburg, Afdeling Integraal Waterbeleid, MaastrichtGoogle Scholar
  53. Smith DI (1994) Flood damage estimation—a review of urban stage-damage curves and loss functions. Water SA 20:231–238Google Scholar
  54. Stam MH (2002) Effects of land-use and precipitation changes on floodplain sedimentation in the nineteenth and twentieth centuries (Geul River, the Netherlands). In: Martini IP, Baker VR, Garzón G (eds) Flood and megaflood processes and deposits: recent and ancient examples. Blackwell Science, Oxford, pp 251–267CrossRefGoogle Scholar
  55. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  56. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10:183–243Google Scholar
  57. Tu M, Hall MJ, De Laat PJM, De Wit MJM (2005) Extreme floods in the Meuse river over the past century: aggravated by land-use changes? Phys Chem Earth, Parts A/B/C 30:267–276CrossRefGoogle Scholar
  58. Van den Hurk B, Klein Tank A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI Climate change scenarios 2006 for the Netherlands. KNMI Scientific Report WR 2006-01. KNMI, De BiltGoogle Scholar
  59. Van Deursen WPA, Middelkoop H (2001) Development of flood management strategies for the Rhine and Meuse basins in the context of integrated river management. Executive summary of the IRMA-SPONGE Project 3/NL/1/164/99 15 183 01. Netherlands Centre for River Studies, RotterdamGoogle Scholar
  60. Van Deursen WPA, Middelkoop H (2002) Development of flood management strategies for the Rhine and Meuse basins in the context of integrated river management. Executive summary of the IRMA-SPONGE Project 2. In: Hooijer A, Van Os A (eds) Towards sustainable flood risk management in the Rhine and Meuse River basins. NCR, DelftGoogle Scholar
  61. Van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460. doi: 10.1002/(SICI)1099-1417(199611/12)11:6<451::AID-JQS275>3.0.CO;2-9 CrossRefGoogle Scholar
  62. Van Rompaey AJJ, Govers G, Puttemans C (2002) Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surf Process Landf 27:481–494. doi: 410.1002/esp.1335 CrossRefGoogle Scholar
  63. Verburg PH (2006) Simulating feedbacks in land use and land cover models. Landsc Ecol 21:1171–1183. doi: 1110.1007/s10980-10006-10029-10984 CrossRefGoogle Scholar
  64. Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114:39–56CrossRefGoogle Scholar
  65. Verburg PH, Eickhout B, Van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77. doi: 10.1007/s00168-00007-00136-00164 CrossRefGoogle Scholar
  66. Ward PJ, Aerts JCJH, De Moel H, Renssen H (2007) Verification of a coupled climate–hydrological model against Holocene palaeohydrological records. Glob Planet Change 57:283–300. doi: 10.1016/j.gloplacha.2006.12.002 CrossRefGoogle Scholar
  67. Ward PJ, Renssen H, Aerts JCJH, Van Balen RT, Vandenberghe J (2008) Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrol Earth Syst Sci 12:159–175. www.hydrol-earth-syst-sci.net/112/159/2008.CrossRefGoogle Scholar
  68. Ward PJ, Van Balen RT, Verstraeten G, Renssen H, Vandenberghe J (2009) The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103:389–400. doi: 10.1016/j.geomorph.2008.07.006 CrossRefGoogle Scholar
  69. Westhoek HJ, Van den Berg M, Bakkes JA (2006) Scenario development to explore the future of Europe’s rural areas. Agric Ecosyst Environ 114:7–20. doi: 10.1016/j.agee.2005.1011.1005 CrossRefGoogle Scholar
  70. WUR/MNP (2007) Eururalis 2.0 CD-ROM. Wageningen UR, WageningenGoogle Scholar
  71. Zagwijn WH (1994) Reconstruction of climate change during the Holocene in western and central Europe based on pollen records of indicator species. Veg Hist Archaeobot 3:65–88. doi: 10.1007/BF00189928 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Philip J. Ward
    • 1
    Email author
  • Hans Renssen
    • 2
  • Jeroen C. J. H. Aerts
    • 1
  • Peter H. Verburg
    • 1
  1. 1.Institute for Environmental Studies (IVM), Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Earth Sciences, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations