Climatic Change

, Volume 103, Issue 1–2, pp 93–115 | Cite as

European CO2 fluxes from atmospheric inversions using regional and global transport models

  • L. Rivier
  • Ph. Peylin
  • Ph. Ciais
  • M. Gloor
  • C. Rödenbeck
  • C. Geels
  • U. Karstens
  • Ph. Bousquet
  • J. Brandt
  • M. Heimann
  • Aerocarb experimentalists
Article

Abstract

Approximately half of human-induced carbon dioxide (CO2) emissions are taken up by the land and ocean, and the rest stays in the atmosphere, increasing the global concentration and acting as a major greenhouse-gas (GHG) climate-forcing element. Although GHG mitigation is now in the political arena, the exact spatial distribution of the land sink is not well known. In this paper, an estimation of mean European net ecosystem exchange (NEE) carbon fluxes for the period 1998–2001 is performed with three mesoscale and two global transport models, based on the integration of atmospheric CO2 measurements into the same Bayesian synthesis inverse approach. A special focus is given to sub-continental regions of Europe making use of newly available CO2 concentration measurements in this region. Inverse flux estimates from the five transport models are compared with independent flux estimates from four ecosystem models. All inversions detect a strong annual carbon sink in the southwestern part of Europe and a source in the northeastern part. Such a dipole, although robust with respect to the network of stations used, remains uncertain and still to be confirmed with independent estimates. Comparison of the seasonal variations of the inversion-based net land biosphere fluxes (NEP) with the NEP predicted by the ecosystem models indicates a shift of the maximum uptake period, from June in the ecosystem models to July in the inversions. This study thus improves on the understanding of the carbon cycle at sub-continental scales over Europe, demonstrating that the methodology for understanding regional carbon cycle is advancing, which increases its relevance in terms of issues related to regional mitigation policies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker DF et al (2001) Sources and sinks of atmospheric CO2 estimated from batch least-squares inversions of CO2 concentration measurements. PhD dissertation, Princeton University, NJGoogle Scholar
  2. Bocquet M (2005) Grid resolution dependence in the reconstruction of an atmospheric tracer source. Nonlinear Process Geophys 12:219–234CrossRefGoogle Scholar
  3. Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans P (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346CrossRefGoogle Scholar
  4. Bruhwiler LMP, Michalak AM, Peters W, Baker D, Tans P (2005) An improved Kalman Smoother for atmospheric inversions. Atmos Chem Phys 5:2691–2702CrossRefGoogle Scholar
  5. Carouge C, Bousquet P, Peylin P, Rayner P, Ciais P (2008) What can we learn from European continuous atmospheric CO2 measurements to quantify regional fluxes, part 1: potential of the network. ACPD 8(5):18591–18620Google Scholar
  6. Chevillard A, Karstens U, Ciais P, Lafont S, Heimann M (2002) Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus B 54:872–894CrossRefGoogle Scholar
  7. Christensen JH (1997) The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the arctic. Atmos Environ 31:4169–4191CrossRefGoogle Scholar
  8. Enting I (2002) Inverse problems in atmospheric constituent transport. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J et al (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2 data and models. Science 282:442–446CrossRefGoogle Scholar
  10. Frohn LM, Christensen JH, Brandt J (2002) Development of a high resolution nested air pollution model—the numerical approach. J Comput Phys 179(1):68–94CrossRefGoogle Scholar
  11. Geels C, Gloor M, Ciais P, Bousquet P, Peylin P, Vermeulen AT, Dargaville R, Aalto T, Brandt J, Christensen JH, Frohn LM, Haszpra L, Karstens U, Rödenbeck C, Ramonet M, Carboni G, Santaguida R (2007) Comparing atmospheric transport models for future regional inversions over Europe—part 1: mapping the atmospheric CO2 signals. Atmos Chem Phys 7:3461–3479CrossRefGoogle Scholar
  12. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin PS, Grainger CA (2003) Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J Geophys Res 108(D24):4756. doi: 10.1029/2002JD003018 CrossRefGoogle Scholar
  13. GLOBALVIEW-CO2 (Cooperative Atmospheric Data Integration Project—Carbon Dioxide) (2005) CD-ROM, NOAA CMDL, Boulder, Colorado. Available online via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/CO2/GLOBALVIEW
  14. Gloor M, Fan S, Sarmiento J, Pacala S (1999) A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J Geophys Res 14:245–260Google Scholar
  15. Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5) NCAR/TN-398+STR. NCAR Technical Note, Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, Boulder, p 122Google Scholar
  16. Gurney K et al (2003) TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B:555–579Google Scholar
  17. Gurney KR, Chen YH, Maki T, Kawa SR, Andrews A, Zhu Z (2005) Sensitivity of atmospheric CO2 inversion to seasonal and interannual variations in fossil fuel emissions. J Geophys Res 110(D10):10308–10321CrossRefGoogle Scholar
  18. Heimann M (1996) The global atmospheric transport model TM2. Tech Rep 10, Max-Planck-Institut für Meteorologie, Hamburg, GermanyGoogle Scholar
  19. Hess PG, Flocke S, Lamarque J-F, Barth MC, Madronich S (2000) Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX intensive. J Geophys Res 105(D22):26809–26839CrossRefGoogle Scholar
  20. Holton JR (1987) Issues in atmospheric and oceanic modeling. Dyn Atmos Ocean 11:204–206 (review)CrossRefGoogle Scholar
  21. Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic, New YorkGoogle Scholar
  22. Janssens IA et al (2003) Europe’s terrestral biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1541CrossRefGoogle Scholar
  23. Kaminski T, Heimann M, Giering R (1999) A coarse grid three dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix. J Geophys Res 104:18535–18553Google Scholar
  24. Kaminski T, Rayner PJ, Heimann M, Enting IG (2001) On aggregation errors in atmospheric transport inversions. J Geophys Res 106(D5):4703–4715CrossRefGoogle Scholar
  25. Knorr W, Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus 47B:471–489Google Scholar
  26. Lafont S, Kergoat L, Dedieu G, Chevillard A, Karstens U, Kolle O (2002) Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus 54B:820–833, 3719Google Scholar
  27. Lauvaux T, Uliasz M, Sarrat C, Chevallier F, Bousquet P, Lac C, Davis KJ, Ciais P, Denning AS, Rayner P (2007) Mesoscale inversion: first results from the CERES campaign with synthetic Data. Atmos Chem Phys Discuss 7:10439–10465. SRef-ID: 1680-7375/acpd/2007-7-10439CrossRefGoogle Scholar
  28. Law RM et al (1996) Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Glob Biogeochem Cycles 10:783–796CrossRefGoogle Scholar
  29. Law RM et al (2008) TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Glob Biogeochem Cycles 22:GB3009. doi: 10.1029/2007GB003050 CrossRefGoogle Scholar
  30. Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. In: Seminar proceedings ECMWF, ECMWF Shinfield Park, Reading, Berks, United Kingdom, vol 2, pp 147–191Google Scholar
  31. Olivier JGJ, Berdowski JJM (2001) Global emissions sources and sinks. In: Berdowski J, Guicherit R, Heij BJ (eds) The climate system. A.A. Balkema/Swets & Zeitlinger, Lisse, pp 33–78. ISBN 90 5809 255 0Google Scholar
  32. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–2320CrossRefGoogle Scholar
  33. Page SE et al (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65CrossRefGoogle Scholar
  34. Patra PK et al (2006) Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean-only sites versus all-sites observational networks. Geophys Res Lett 33:L05814. doi: 10.1029/2005GL025403 CrossRefGoogle Scholar
  35. Peters W et al (2007) An atmospheric perspective on North American carbon dioxide exchange: carbontracker. Proc Natl Acad Sci 104:18925–18930CrossRefGoogle Scholar
  36. Peylin P, Bousquet P, Ciais P (2001) Inverse modeling of atmospheric carbon dioxide fluxes—response. Science 294(5550):2292–2292Google Scholar
  37. Peylin P, Rayner P, Bousquet P, Carouge C, Hourdin F, Heinrich P, Ciais P, AEROCARB contributors (2005) Daily CO2 flux over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmos Chem Phys 5:3173–3186. ISI:000233610300001CrossRefGoogle Scholar
  38. Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr L, Chen AP, Grelle A, Hollinger D, Laurila T, Lindroth A, Richardson AD, Vesala (2007) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52. doi: 10.1038/nature06444 CrossRefGoogle Scholar
  39. Rodenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–200. Inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:2575–2659CrossRefGoogle Scholar
  40. Sadourny R, Laval K (1984) January and July performance of the LMD general circulation model. In: Berger A, Nicolis C (eds) New perspectives in climate modeling. Elsevier, New York, pp 173–197Google Scholar
  41. Takahashi T, Feely RA, Weiss R, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air–sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. Proc Natl Acad Sci 94:8292–8299CrossRefGoogle Scholar
  42. Tarantola A (1987) Inverse problem theory. Elsevier, AmsterdamGoogle Scholar
  43. Turner DP et al (2005) Site-level evaluation of satellite-based global terrestrial GPP and NPP monitoring. Glob Chang Biol 11:666–684CrossRefGoogle Scholar
  44. Van Der Werf GR et al (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science 303(5654):73–76CrossRefGoogle Scholar
  45. Vestreng V, Breivik K, Adams M, Wagener A, Goodwin J, Rozovskkaya O, Pacyna JM (2005) Inventory review 2005, emission data reported to LRTAP Convention and NEC Directive, Initial review of HMs and POPs, MSC-W 1/2005 ISSN 0804-2446, EMEPGoogle Scholar
  46. Vetter M, Churkina G, Jung M, Reichstein M, Zaehle S, Bondeau A, Chen Y, Ciai P, Feser F, Freibauer A, Geyer R, Jones C, Papale D, Tenhunen J, Tomelleri E, Trusilova K, Viovy N, Heimann M (2007) Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models. Biogeosciences 5:561–583CrossRefGoogle Scholar
  47. Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res (Atmospheres) 106:20069–20083CrossRefGoogle Scholar
  48. Zupanski D, Denning AS, Uliasz M, Zupanski M, Schuh AE, Rayner PJ, Peters W, Corbin KD (2007) Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF). J Geophys Res 112:D17107. doi: 10.1029/2006JD008371 12 September 2007CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • L. Rivier
    • 1
  • Ph. Peylin
    • 2
  • Ph. Ciais
    • 1
  • M. Gloor
    • 3
  • C. Rödenbeck
    • 4
  • C. Geels
    • 5
  • U. Karstens
    • 4
  • Ph. Bousquet
    • 1
  • J. Brandt
    • 5
  • M. Heimann
    • 4
  • Aerocarb experimentalists
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, IPSLParisFrance
  2. 2.Laboratoire de Biogéochimie des Milieux Continentaux, CEA-CNRS-UVSQ, IPSLGrignonFrance
  3. 3.School of GeographyUniversity of LeedsLeedsUK
  4. 4.Max-Planck-Institut fur BiogeochemieJenaGermany
  5. 5.National Environmental Research InstituteUniversity of AarhusRoskildeDenmark

Personalised recommendations