Climatic Change

, Volume 105, Issue 3–4, pp 597–618 | Cite as

GNSS remote sensing of the Australian tropopause

  • Khandu
  • J. L. Awange
  • J. Wickert
  • T. Schmidt
  • M. A. Sharifi
  • B. Heck
  • K. Fleming
Article

Abstract

Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde. The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho S-P, Hunt DC, Kuo Y-H, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson TK, Trenberth KE, Wee T-K, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89:313–333CrossRefGoogle Scholar
  2. Awange JL, Grafarend EW (2005) “GPS meteorology in environmental monitoring”, solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin, pp 217–244Google Scholar
  3. Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans AGU 87. doi:10.1029/2006EO170003
  4. Foelsche U, Borsche M, Steiner AK, Gobiet A, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Clim Dyn 31:49–65CrossRefGoogle Scholar
  5. Gorbunov ME, Gurvich AS, Bengtsson L (1996) Advanced algorithms of inversion of GPS/MET satellite data and their application to the reconstruction of temperature and humidity. Max-Plunk-Institut fur Meteorologie, HamburgGoogle Scholar
  6. Honika PK (1998) Statistics of the global tropopause pressure. Mon Weather Rev 126:3303–3325CrossRefGoogle Scholar
  7. IPCC (2007) IPCC fourth assessment report: climate change 2007: the physical science basis. Intergovernmental panel on climate change. (http://www.ipcc.ch/)
  8. Kishore P, Namboothiri SP, Igarashi K, Jiang JH, Ao CO (2006) Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J Geophys Res 111. doi:10.1029/2005JD006827
  9. Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosonde. Geophys Res Lett 32. doi:10.1029/2004GL021443
  10. Melbourne WG, Davis ES, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publ 94-18Google Scholar
  11. Murphy BF, Timbal B (2008) A review of recent climate variability and climate in southeastern Australia. Int J Climatol 28:859–879CrossRefGoogle Scholar
  12. Nichols N (2006) Detecting and attributing Australian climate change: a review. Aust Meteorol Mag 55:199–211Google Scholar
  13. Nishida M, Shimizu A, Tsuda T, Rocken C, Ware RH (2000) Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GNSS/MET). J Meteorol Soc Jpn 78:691–700Google Scholar
  14. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Brüggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483CrossRefGoogle Scholar
  15. Santer BD, Wigley TML, Simmons AJ, Kallberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Brüggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109. doi:10.1029/2004JD005075
  16. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect influences on climate. Meteorol Z 12:131–136CrossRefGoogle Scholar
  17. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35. doi:10.1029/2008GL034012
  18. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488CrossRefGoogle Scholar
  19. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi:10.1029/2006JD007363
  20. Steiner AK (1998) High resolution sounding of key climate variabilities using the radio occultation technique. Dissertation. Institution for Meteorology and Geophysics, University of GrazGoogle Scholar
  21. Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimara F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan—exploring frontiers of geodesy. Earth Planets Space 50(10):i–ivGoogle Scholar
  22. Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36. doi:10.1029/2008GL036801
  23. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Gorbunov M, Sokolovskiy S, Hardy Y, Kuo Y, Zou X, Trenbeth K, Meehan T, Melbourne W, Businger S (1996) GPS sounding of the atmosphere from Low Earth Orbit: preliminary results. Bull Am Meteorol Soc 77:19–40CrossRefGoogle Scholar
  24. Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: algorithmen, prozessierungssystem und erste ergebnisse. Scientific Technical Report 02/07, GFZ, PotsdamGoogle Scholar
  25. Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Scientific Report 04-09. Danish Meteorological Institute, CopenhagenGoogle Scholar
  26. Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwald L, Galas R, Meehan TK, Melbourne WG, Hocke K (2001) Atmospheric sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28. doi:10.1029/2001GL013117
  27. Wickert J, Schmidt T, Beyerle G, König R, Reigber CH, Jakowski N (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of atmospheric profiles. J Meteorol Soc Jpn 82(1B):381–395CrossRefGoogle Scholar
  28. Wickert J, Beyerle G, König R, Heise S, Grunwaldt L, Michalak G, Reigber CH, Schmidt T (2005) GPS radio occultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23(3):653–658CrossRefGoogle Scholar
  29. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB, Heise S, Huang C-Y, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial, Atmospheric and Oceanic Sciences 20(1):35–50CrossRefGoogle Scholar
  30. WMO (1957) Definition of tropopause, Geneva. World Meteorological Organisation, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Khandu
    • 1
  • J. L. Awange
    • 1
  • J. Wickert
    • 2
  • T. Schmidt
    • 2
  • M. A. Sharifi
    • 3
  • B. Heck
    • 4
  • K. Fleming
    • 1
  1. 1.Curtin University of TechnologyPerthAustralia
  2. 2.Department 1: Geodesy and Remote SensingGerman Research Center for Geosciences (GFZ)PotsdamGermany
  3. 3.Surveying and Geomatics Engineering Department, Faculty of EngineeringUniversity of TehranTehranIran
  4. 4.Geodetic InstituteKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations